FDTD-based antenna de-embedding in WBAN on-body channel modeling

Author(s):  
Jun-ichi Naganawa ◽  
Minseok Kim ◽  
Takahiro Aoyagi ◽  
Jun-ichi Takada
Keyword(s):  
2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Irina Sirkova

AbstractThis work provides an introduction to one of the most widely used advanced methods for wave propagation modeling, the Parabolic Equation (PE) method, with emphasis on its application to tropospheric radio propagation in coastal and maritime regions. The assumptions of the derivation, the advantages and drawbacks of the PE, the numerical methods for solving it, and the boundary and initial conditions for its application to the tropospheric propagation problem are briefly discussed. More details are given for the split-step Fourier-transform (SSF) solution of the PE. The environmental input to the PE, the methods for tropospheric refractivity profiling, their accuracy, limitations, and the average refractivity modeling are also summarized. The reported results illustrate the application of finite element (FE) based and SSF-based solutions of the PE for one of the most difficult to treat propagation mechanisms, yet of great significance for the performance of radars and communications links working in coastal and maritime zones — the tropospheric ducting mechanism. Recent achievements, some unresolved issues and ongoing developments related to further improvements of the PE method application to the propagation channel modeling in sea environment are highlighted.


Author(s):  
Reza Aminzadeh ◽  
Arno Thielens ◽  
Maxim Zhadobov ◽  
Luc Martens ◽  
Wout Joseph
Keyword(s):  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Abhishek Tripathi ◽  
Shilpi Gupta ◽  
Abhilash Mandloi ◽  
Gireesh G Soni

AbstractThis paper outlines the performance of a 10 Gbit/s rectangular 16-quadrature amplitude modulation–based radio over free space optical communication system. Here, 60 GHz radio frequency–modulated signal is propagated through a 1550-nm free space optical link. The gamma–gamma distribution is used for the channel modeling of weak to strong atmospheric turbulence. The reported constellation plots and eye patterns are attributed to impairment factors in adverse conditions of atmosphere. The evaluation is carried out that the variation in average error vector magnitude in the range of 1.45–1.63% and equivalent symbol error rate of 0.019–0.023 are obtained for a clear atmosphere compared to the turbulent link of 0.2–1 km, respectively.


Sign in / Sign up

Export Citation Format

Share Document