A post-package bit-repair scheme using static latches with bipolar-voltage programmable antifuse circuit for high-density DRAMs

Author(s):  
Kyeong-Sik Min ◽  
Jong-Tai Park ◽  
Sang-Pil Lee ◽  
Young-Hee Kim ◽  
Tae-Heum Yang ◽  
...  
Keyword(s):  
EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
R Adelino Recasens ◽  
L Llorca-Fenes ◽  
A Sarrias ◽  
A Teis ◽  
V Bazan ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. BACKGROUND Left atrial fibrosis is a marker of atrial disease and it has an important role in the pathophysiology of atrial fibrillation (AF). Late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) is an emerging tool to detect left atrial fibrosis. However, data on the correlation between LGE-CMR detected fibrosis and low voltage areas to define fibrotic tissue is scarce. PURPOSE To assess the correlation and degree of concordance between LGE-CMR and high-density bipolar voltage mapping for the identification of left atrial abnormal tissue. METHODS Seven patients scheduled for AF ablation (including first and redo procedures) underwent a preprocedural 1.5 Tesla LGE-CMR including left atrial 3D inversion-recovery steady-state free precession sequence (ECG and respiratory triggering) 20 minutes after the injection of 0.2 mmol/kg of gadobutrol. A high-density electroanatomical voltage mapping was acquired with a 16-electrode grid configuration mapping catheter during sinus rhythm. LGE-CMR studies were analyzed off-line with an advanced image post-processing tool (ADAS 3D). Atrial wall intensity was normalized to blood pool, obtaining an image intensity ratio (IIR) value for each CMR point of the 3D model.  High-density bipolar voltage maps and LGE-CMR 3D left atrial reconstruction were merged (figure, panel A). Voltage points were projected to the LGE-CMR left atrial 3D model, allowing point-by-point correlation analysis between voltage (log transformed due to non-normal distribution) with IIR. Left atrial fibrosis area and percentage were quantified using the standard cut-off values (bipolar voltage <0.5mV and IIR >1.2). We assessed the degree of concordance for normal and abnormal (fibrosis) tissue classification between the two techniques using different cut-off values (< 0.5mV and <1mV for bipolar voltage and >0.9, >1, >1.1 and >1.2 for IIR).   RESULTS The average fibrosis area detected with LGE-CMR was lower than that detected with high-density bipolar voltage, using standard cut-off values (18.6 ± 5.7 cm2 vs. 40.6 ± 12.5 cm2, p = 0.13 respectively). There was a poor global point-by-point correlation between log-transformed voltage and IIR was r=-0.093, p < 0.001 (figure, panel B). The best concordance was obtained when using bipolar voltage and IIR of 0.5mV and 1.2, respectively (64.7 %; Kappa 0.101). However, the highest kappa index (0.142) for concordance was achieved with cutoff values of bipolar voltage <1mV and IIR >1, with an agreement percentage of 54.6%. CONCLUSIONS Left atrial tissue characterization between LGE-CMR and high-density bipolar voltage mapping showed significant but poor point-by-point correlation. Although the highest concordance was obtained using standard cutoff values, the Kappa index was best when applying non-standard cutoffs (1mV for bipolar voltage and >1 for IIR). Abstract Figure.


2018 ◽  
pp. 1115-1115
Author(s):  
Maciej Wójcik ◽  
Łukasz Konarski ◽  
Robert Błaszczyk ◽  
Piotr Aljabali ◽  
Przemysław Zając

2020 ◽  
Vol 11 ◽  
Author(s):  
Deborah Nairn ◽  
Heiko Lehrmann ◽  
Björn Müller-Edenborn ◽  
Steffen Schuler ◽  
Thomas Arentz ◽  
...  

Background: Presence of left atrial low voltage substrate in bipolar voltage mapping is associated with increased arrhythmia recurrences following pulmonary vein isolation for atrial fibrillation (AF). Besides local myocardial fibrosis, bipolar voltage amplitudes may be influenced by inter-electrode spacing and bipole-to-wavefront-angle. It is unclear to what extent these impact low voltage areas (LVA) in the clinical setting. Alternatively, unipolar electrogram voltage is not affected by these factors but requires advanced filtering.Objectives: To assess the relationship between bipolar and unipolar voltage mapping in sinus rhythm (SR) and AF and identify if the electrogram recording mode affects the quantification and localization of LVA.Methods: Patients (n = 28, 66±7 years, 46% male, 82% persistent AF, 32% redo-procedures) underwent high-density (>1,200 sites, 20 ± 10 sites/cm2, using a 20-pole 2-6-2 mm-spaced Lasso) voltage mapping in SR and AF. Bipolar LVA were defined using four different thresholds described in literature: <0.5 and <1 mV in SR, <0.35 and <0.5 mV in AF. The optimal unipolar voltage threshold resulting in the highest agreement in both unipolar and bipolar mapping modes was determined. The impact of the inter-electrode distance (2 vs. 6 mm) on the correlation was assessed. Regional analysis was performed using an 11-segment left atrial model.Results: Patients had relevant bipolar LVA (23 ± 23 cm2 at <0.5 mV in SR and 42 ± 26 cm2 at <0.5 mV in AF). 90 ± 5% (in SR) and 85 ± 5% (AF) of mapped sites were concordantly classified as high or low voltage in both mapping modes. Discordant mapping sites located to the border zone of LVA. Bipolar voltage mapping using 2 vs. 6 mm inter-electrode distances increased the portion of matched mapping points by 4%. The unipolar thresholds (y) which resulted in a high spatial concordance can be calculated from the bipolar threshold (x) using following linear equations: y = 1.06x + 0.26mV (r = 0.994) for SR and y = 1.22x + 0.12mV (r = 0.998) for AF.Conclusion: Bipolar and unipolar voltage maps are highly correlated, in SR and AF. While bipole orientation and inter-electrode spacing are theoretical confounders, their impact is unlikely to be of clinical importance for localization of LVA, when mapping is performed at high density with a 20-polar Lasso catheter.


2002 ◽  
Vol 37 (2) ◽  
pp. 251-254 ◽  
Author(s):  
Jae-Kyung Wee ◽  
Kyeong-Sik Min ◽  
Jong-Tai Park ◽  
Sang-Pil Lee ◽  
Young-Hee Kim ◽  
...  
Keyword(s):  

Author(s):  
S. McKernan ◽  
C. B. Carter ◽  
D. Bour ◽  
J. R. Shealy

The growth of ternary III-V semiconductors by organo-metallic vapor phase epitaxy (OMVPE) is widely practiced. It has been generally assumed that the resulting structure is the same as that of the corresponding binary semiconductors, but with the two different cation or anion species randomly distributed on their appropriate sublattice sites. Recently several different ternary semiconductors including AlxGa1-xAs, Gaxln-1-xAs and Gaxln1-xP1-6 have been observed in ordered states. A common feature of these ordered compounds is that they contain a relatively high density of defects. This is evident in electron diffraction patterns from these materials where streaks, which are typically parallel to the growth direction, are associated with the extra reflections arising from the ordering. However, where the (Ga,ln)P epilayer is reasonably well ordered the streaking is extremely faint, and the intensity of the ordered spot at 1/2(111) is much greater than that at 1/2(111). In these cases it is possible to image relatively clearly many of the defects found in the ordered structure.


Author(s):  
L. Mulestagno ◽  
J.C. Holzer ◽  
P. Fraundorf

Due to the wealth of information, both analytical and structural that can be obtained from it TEM always has been a favorite tool for the analysis of process-induced defects in semiconductor wafers. The only major disadvantage has always been, that the volume under study in the TEM is relatively small, making it difficult to locate low density defects, and sample preparation is a somewhat lengthy procedure. This problem has been somewhat alleviated by the availability of efficient low angle milling.Using a PIPS® variable angle ion -mill, manufactured by Gatan, we have been consistently obtaining planar specimens with a high quality thin area in excess of 5 × 104 μm2 in about half an hour (milling time), which has made it possible to locate defects at lower densities, or, for defects of relatively high density, obtain information which is statistically more significant (table 1).


Author(s):  
Evelyn R. Ackerman ◽  
Gary D. Burnett

Advancements in state of the art high density Head/Disk retrieval systems has increased the demand for sophisticated failure analysis methods. From 1968 to 1974 the emphasis was on the number of tracks per inch. (TPI) ranging from 100 to 400 as summarized in Table 1. This emphasis shifted with the increase in densities to include the number of bits per inch (BPI). A bit is formed by magnetizing the Fe203 particles of the media in one direction and allowing magnetic heads to recognize specific data patterns. From 1977 to 1986 the tracks per inch increased from 470 to 1400 corresponding to an increase from 6300 to 10,800 bits per inch respectively. Due to the reduction in the bit and track sizes, build and operating environments of systems have become critical factors in media reliability.Using the Ferrofluid pattern developing technique, the scanning electron microscope can be a valuable diagnostic tool in the examination of failure sites on disks.


Sign in / Sign up

Export Citation Format

Share Document