On the impact of street width on 5.9 GHz radio signal propagation in vehicular networks

Author(s):  
Felix Erlacher ◽  
Florian Klingler ◽  
Christoph Sommer ◽  
Falko Dressler
2016 ◽  
pp. 3564-3575 ◽  
Author(s):  
Ara Sergey Avetisyan

The efficiency of virtual cross sections method and MELS (Magneto Elastic Layered Systems) hypotheses application is shown on model problem about distribution of wave field in thin surface layers of waveguide when plane wave signal is propagating in it. The impact of surface non-smoothness on characteristics of propagation of high-frequency horizontally polarized wave signal in isotropic elastic half-space is studied. It is shown that the non-smoothness leads to strong distortion of the wave signal over the waveguide thickness and along wave signal propagation direction as well.  Numerical comparative analysis of change in amplitude and phase characteristics of obtained wave fields against roughness of weakly inhomogeneous surface of homogeneous elastic half-space surface is done by classical method and by proposed approach for different kind of non-smoothness.


Author(s):  
Xiuhua Fu ◽  
Tian Ding ◽  
Rongqun Peng ◽  
Cong Liu ◽  
Mohamed Cheriet

AbstractThis paper studies the communication problem between UAVs and cellular base stations in a 5G IoT scenario where multiple UAVs work together. We are dedicated to the uplink channel modeling and the performance analysis of the uplink transmission. In the channel model, we consider the impact of 3D distance and multi-UAVs reflection on wireless signal propagation. The 3D distance is used to calculate the path loss, which can better reflect the actual path loss. The power control factor is used to adjust the UAV's uplink transmit power to compensate for different propagation path losses, so as to achieve precise power control. This paper proposes a binary exponential power control algorithm suitable for 5G networked UAV transmitters and presents the entire power control process including the open-loop phase and the closed-loop phase. The effects of power control factors on coverage probability, spectrum efficiency and energy efficiency under different 3D distances are simulated and analyzed. The results show that the optimal power control factor can be found from the point of view of energy efficiency.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 3987
Author(s):  
Adam Olesiński ◽  
Zbigniew Piotrowski

In localization systems based on the emission of reference radio signals, an important issue related to the reliability of sensor operation is the problem of operating time and power of the emitted reference radio signal. There are many localization methods that have proven useful in practice and that use a reference radio signal for this purpose. In the issue of determining the location of radio emitters, various radio signal propagation models are used to determine the effective range and distance of the sensor-receiver from the radio emitter. This paper presents an adaptive power control algorithm for a transmitter, as a reference emitter, operating in power-saving mode. An important advantage of the presented solution is the adjustment of the localization system accuracy at the assumed level of energy radiated by radio emitters based on the RSSI signal received power estimation.


2021 ◽  
Author(s):  
Boris Gailleton ◽  
Luca Malatesta ◽  
Jean Braun ◽  
Guillaume Cordonnier

<p>Many laws have been developed to describe the different aspects of landscape evolution at large spatial and temporal scales. Natural landscapes have heterogeneous properties (lithologies, climates, tectonics, etc.) that are associated with multiple coexisting processes. In turn, this can demand different mathematical expressions to model landscape evolution as a function of time and or space. Landscape Evolution Models are mostly designed to facilitate the combination of different landscape-wide laws in a plug-and-play way and many frameworks are being developed in this aim. However, most current frameworks cannot capture important landscape processes such as lake dynamics and full sediment tracing because they are optimized for speed and handle fluxes separately. Several processes require information from more than the immediate neighboring cells within a time step and demand an integrated knowledge from the entire upstream trajectory. Lakes for example require knowledge of all upstream water and sediment fluxes to be filled. These can only be known if all the laws controlling those have been processed. Tackling these situation with a grid logic requires substantial amount of numerical refactoring from existing models.</p><p>We present an alternative method to tackle landscape evolution modelling in heterogeneous landscapes with a framework inspired from Lagrangian and cellular automaton methods. Our framework only relies on the assumption that upstream nodes needs to be processed before the downstream ones, including lakes with outlets, in order to process all selected governing equations on a pixel-to-pixel basis. This way, we ensure that the true content of sediment and water fluxes can be known and tracked at any points. We first utilise graph theory to (i) find the most comprehensive path to reroute water through depressions and (ii) determine a generic multiple flow topological order (any node is processed after all potential upstream ones). Particles that register and track all fluxes simultaneously can then "roll" on the landscape and merge between each other while interacting with the grid.</p><p>This formulation makes possible a number of generic features. (i) The laws can be dynamically adapted to the environment (e.g. switching from single to multiple flow function of water content, adapting erodibility function of the sediment composition and quantity), (ii) Depressions can be explicitly managed, filled (or not) and separated from the rest of the landscape (e.g. sedimentation or evaporation in lakes) as a function function of inputted fluxes and parameters, (iii) full provenance, transport time, and deposition tracking as the particle can always keep in memory where the fluxes are from and in what proportions. In this contribution, we demonstrate the impact the importance of considering these additional elements in landscape evolution. In particular, lake dynamic can significantly impact the long-term signal propagation from source to sink.</p>


2019 ◽  
Author(s):  
Sara Savi ◽  
Stefanie Tofelde ◽  
Andrew D. Wickert ◽  
Aaron Bufe ◽  
Taylor F. Schildgen ◽  
...  

Abstract. Climate and tectonics impact water and sediment fluxes to fluvial systems. These boundary conditions set river form and can be recorded by fluvial deposits. Reconstructions of boundary conditions from these deposits, however, is complicated by complex channel-network interactions and associated sediment storage and release through the fluvial system. To address this challenge, we used a physical experiment to study the interplay between a main channel and a tributary under different forcing conditions. In particular, we investigated the impact of a single tributary junction, where sediment supply from the tributary can produce an alluvial fan, on channel geometries and associated sediment-transfer dynamics. We found that the presence of an alluvial fan may promote or prevent sediment to be moved within the fluvial system, creating different coupling conditions. A prograding alluvial fan, for example, has the potential to disrupt the sedimentary signal propagating downstream through the confluence zone. By analyzing different environmental scenarios, our results indicate the contribution of the two sub-systems to fluvial deposits, both upstream and downstream of the tributary junction, which may be diagnostic of a perturbation affecting the tributary or the main channel only. We summarize all findings in a new conceptual framework that illustrates the possible interactions between tributary alluvial fans and a main channel under different environmental conditions. This framework provides a better understanding of the composition and architecture of fluvial sedimentary deposits found at confluence zones, which is essential for a correct reconstruction of the climatic or tectonic history of a basin.


2020 ◽  
Author(s):  
Giovanni Nico ◽  
Aleksandra Nina ◽  
Anita Ermini ◽  
Pierfrancesco Biagi

<p>In this work we use Very Low Frequency (VLF) radio signals, having a frequency in the bands 20-80 kHz, to study the VLF signal propagation in the atmosphere quite undisturbed conditions by selecting the signals recorded during night. As a good approximation, we can model the propagation of VLF radio signals as characterized by a ground-wave and a sky-wave propagation mode. The first one generates a radio signal that propagates in the channel ground-troposphere, while the second one generates a signal which propagates using the lower ionosphere as a reflector. The VLF receivers of the INFREP (European Network of Electromagnetic Radiation) network are used. These receivers have been installed since 2009 mainly in southern and central Europe and currently the INFREP network consists of 9 receivers. A 1-minute sampling interval is used to record the amplitude of VLF signals. Long time-series of VLF signals propagating during night are extracted from recorded signals to study possible seasonal effects due to temporal variations in the physical properties of troposphere. A graph theory approach is used to investigate the spatial correlation of the aforementioned effects at different receivers. A multivariate analysis is also applied to identify common temporal changes observed at VLF receivers.</p><p>This work was supported by the Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR), Italy, under the project OT4CLIMA. This research is supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, under the projects 176002 and III44002.</p>


Sign in / Sign up

Export Citation Format

Share Document