Calibration of electric field antennae operating in the ELF-MF frequency range at the lightning research station in Rzeszow

Author(s):  
Grzegorz Karnas ◽  
Kamil Filik ◽  
Pawel Szczupak ◽  
Grzegorz Maslowski
Author(s):  
Э.П. Шурина ◽  
Д.В. Добролюбова ◽  
Е.И. Штанько

При решении задач электромагнетизма в широком частотном диапазоне в областях с тонкими пластинами, оболочками и экранами численными методами возникает проблема резкого роста сеточной дискретизации вблизи внутренних структур с разномасштабными габаритными размерами. В работе предложена модификация вариационной постановки векторного метода конечных элементов, основанная на снижении размерности модели в окрестности тонких включений, которая позволяет преодолеть эту проблему за счет специфического учета таких структур на уровне вариационной постановки. Так как редуцирование модели обычно приводит к появлению ограничений на область ее применимости, выполнено исследование диапазона допустимых частот, контрастности электрофизических характеристик матрицы и включений, геометрических особенностей внутренней структуры, для которых предложенная модель позволяет получить корректные с точки зрения физики результаты. Purpose. In this paper, we propose a reduced variational formulation for the Helmholtz equation for the electric field, in which thin highly conductive objects are approximated by surfaces with the equivalent surface current density. We conduct a study aimed at defining the range of application for the reduced variational formulation, focusing on highly contrasting thin objects of various geometrical shape and arrangement in a wide frequency range. Methodology. The modelling is performed on unstructured tetrahedral meshes. Since the reduced variational formulation treats thin highly conductive objects as surfaces, no volume mesh is constructed inside of them.We compare the results obtained by the vector FEM using the proposed variational formulation with the results obtained using standard formulation. Findings. Due to the fact that the proposed variational formulation does not require volume meshing of the thin objects, its computational cost is significantly lower. However, the reduced formulation yields correct results in a restricted frequency range. It also imposes some limitations on the minimal contrast and maximal thickness of the thin highly conductive objects. Originality/value. The proposed reduced variational formulation can be applied to simulate the time-harmonic electric field in the media with thin highly conductive inclusions of either regular or chaotic arrangement, as well as thin shielding plates or casings of various geometrical forms.


2009 ◽  
Vol 23 (12n13) ◽  
pp. 2766-2768
Author(s):  
A. PATANÈ

Progress in the synthesis and engineering of semiconductor materials has led to improved device performances and functionalities. In particular, in the last decade, there has been considerable interest in the physics and applications of highly-mismatched alloys in which small and highly-electronegative isovalent N -atoms are incorporated onto the anion sublattice of a III-V compound semiconductor.1 The most studied material is the GaAs 1-x N x alloy. Our magnetotunnelling studies have shown that a small percentage of N (x < 1%) perturbs dramatically the electronic properties of the host GaAs crystal leading to a large increase of the electron effective mass and an unusual response of the energy-wavevector dispersions to hydrostatic pressure.2–6 These effects differ from the smoother variation of the energy band gap and electron effective mass with alloy composition observed in other semiconductor compounds, such as In y Ga 1-y As . The incorporation of N in GaAs gives rise to a qualitatively different type of alloy phenomenon: N -impurities and N -clusters tend to localize the extended Bloch states of GaAs at resonant energies in the conduction band (CB), thus fragmenting the energy-wavevector dispersion relations. The possibility of tailoring the electronic properties of III-V compounds by N -incorporation has stimulated proposals for innovative devices in optoelectronics and high frequency (terahertz, THz) electronics.7 However, to date, the implementation of dilute nitrides in these technologies presents several challenges, including a degradation of the electron mobility. Also, despite a rapidly expanding body of work on the electronic properties of GaAs 1-x N x, the range of N -concentrations over which this alloy behaves as a good conductor is not yet well established. Our magnetotransport experiments have revealed how the incorporation of N in GaAs affects the electrical conductivity. Our studies in n-type GaAs 1-x N x epilayers revealed a large increase of the resistivity, ρ, for x > 0.2%, which we have attributed to the emergence of defect states with deep (~ 0.3 eV) energy levels. Electron trapping onto these states was not observed at low x (x = 0.2%). In this ultra-dilute alloy regime and at low electric fields (F < 1 kV / cm ) the electrical conductivity retains the characteristic features of transport through extended states, albeit with relatively low mobility (µ ~ 0.1 m 2/ Vs at RT) due to scattering of electrons by N -atoms. We have focused our research on this ultra-dilute regime and exploited the admixing of the localized single N -impurity level with the extended conduction band states of GaAs to realize an unusual type of negative differential velocity (NDV) effect: at large F (> 1 kV / cm ), electrons gain sufficient energy to approach the energy of the resonant N -level, where they become spatially localized.7–10 [Formula: see text] This Resonant Electron Localization in Electric Field, to which we give the acronym RELIEF, leads to NDV and strongly non-linear current-voltage characteristics. We envisage that the RELIEF-effect could be observed in other III-N-V alloys, such as InP 1-x N x and InAs 1-x N x. In these compounds the nature of the resonant interaction between the N -level and the conduction band states of the host-crystal is still relatively unexplored. However, it is clear that the different energy positions of the N -level relative to the conduction band minimum of different materials could offer new degrees of freedom in the design of the electronic band structure and electron dynamics. The RELIEF-effect may open up prospects for future applications in fast electronics. We have shown that the maximum response frequency, fmax, of a RELIEF-diode can be tuned by the applied electric field in the THz frequency range.7 This is of potential technological significance for the development of detectors/sources in the 0.6-1 THz region, which is not currently attainable using conventional Transferred Electron Devices and Quantum Cascade Lasers. Our recent studies of GaAs 1-x N x have also shown a fast response of the current in the sub-THz frequency range.11 Experiments involving diodes optimized for THz-operation coupled with a quantitative theoretical model of the THz dynamics will be now needed to assess the use of GaAs 1-x N x and other III-N-V alloys in detectors/sources of THz radiation. Note from Publisher: This article contains the abstract only.


1964 ◽  
Vol 42 (6) ◽  
pp. 1270-1281 ◽  
Author(s):  
A. J. Nanassy

Electric polarization spectra of oven-dry yellow birch (Betula alleghaniensis Britt.) were measured over the range of frequencies from 50 kc/s to 50 Mc/s and temperatures from 20° to 100 °C. These observations, which provide only a section of the total dispersion and relaxation absorption spectra of the material, give information on the general variation of the dispersion curve with frequency, temperature, and grain orientation to the electric field, and indicate that the total spectra spread over a wide frequency range, probably from 0 c/s to a few Gc/s and include several absorption peaks and dispersion curves.


2020 ◽  
Vol 35 (10) ◽  
pp. 1183-1191
Author(s):  
Abdulrahman Alhomrani ◽  
Ali Yahyaoui ◽  
Anas Al Hashmi ◽  
Ameni Mersani ◽  
Majed Nour ◽  
...  

In this paper, we present the design of a spiral nano-antenna dedicated to infrared energy harvesting at 28.3 THz. A comprehensive, detailed parametric study of key parameters such as the initial angle at the origin arm, width of the spiral arms, gap between the two arms, thickness of substrate, length of substrate, thickness of patch and number of turns of the nano-antenna is also presented and discussed in order to harvest maximum electric field in the gap of the spiral antenna in the frequency range of 28 – 29 THz. The maximum electric field is simulated at 28.1, 28.3, 28.5 and 28.7 THz. A variation of the electric field of the antenna for different value of incident wave angle at the resonance frequency 28.3 THz has been simulated. The main advantages of the studied structure are its ability to reach high confined electric field within its gap, its wideband behavior around the operating frequency 28.3 THz, and its insensitivity to polarization of incident electromagnetic waves.


1996 ◽  
Vol 10 (23n24) ◽  
pp. 3143-3157 ◽  
Author(s):  
S.H. CHOI ◽  
Y.T. CHOI ◽  
S.B. CHOI ◽  
C.C. CHEONG

Conventional rubber mounts and various types of passive or semi-active hydraulic engine mounts for a passenger vehicle have their own functional aims on the limited frequency band in the broad engine operating frequency range. In order to achieve high system performance over all frequency ranges of the engine operation, a new type of engine mount featuring electro-rheological(ER) fluids and piezoactuators is proposed in this study. A mathematical model of the proposed engine mount is derived using the bond graph method which is inherently adequate to model the interconnected hydromechanical system. In the low frequency domain, the ER fluid is activated upon imposing an electric field for vibration isolation while the piezoactuator is activated in the high frequency domain. A neuro-control algorithm is utilized to determine control electric field for the ER fluid, and H∞ control technique is adopted for the piezoactuator Comparative works between the proposed and single-actuating(ER fluid only or piezoactuator only) engine mounts are undertaken by evaluating force transmissibility over a wide operating frequency range.


2014 ◽  
Vol 07 (02) ◽  
pp. 1450018 ◽  
Author(s):  
A. F. Qasrawi ◽  
Faten M. Bzour ◽  
Eman O. Nazzal ◽  
A. Mergen

In this work, the electrical properties of samarium-doped bismuth niobium zinc oxide ( Sm -doped BZN ) pyrochlore ceramics are investigated by means of temperature dependent electrical conductivity and capacitance spectroscopy in the frequency range of 0–3 GHz. It was observed that the novel dielectric Sm - BZN ceramic exhibits a temperature and electric field dependent dielectric breakdown. When measured at 300 K, the breakdown electric field is 1.12 kV/cm and when heated the breakdown temperature is ~ 420 K. The pyrochlore is thermally active above 440 K with conductivity activation energy of 1.37 eV. In addition, the room temperature capacitance spectra reflected a resonance–antiresonance switching property at 53 MHz when subjected to an AC signal of low power of 5 dBm. Furthermore, when the Sm - BZN ceramics are used as microwave cavity and tested in the frequency range of 1.0–3.0 GHz, the cavity behaves as low pass filter with wide tunability up to a frequency of 1.91 GHz. At this frequency it behaves as a band rejection filter that blocks waves of 1.91 GHz and 2.57 GHz frequencies. These properties of the Sm -doped BZN are promising as they indicate the usability of the ceramics in digital electronic circuits as resonant microwave cavities suitable for the production of low pass/rejection band filters.


Sign in / Sign up

Export Citation Format

Share Document