Group foraging in carnivorous plants: Carnivorous plant Drosera makinoi (Droseraceae) is more effective at trapping larger prey in large groups

Author(s):  
Kazuki Tagawa ◽  
Mikio Watanabe
Author(s):  
Bartosz J. Płachno ◽  
Lyudmila E. Muravnik

We review the current knowledge of trap anatomy of carnivorous plants, with a focus on the diversity and structure of the glands that are used to attract, capture, kill and digest their prey and finally to absorb nutrients from carcasses of prey. These glands have diverse forms. Regardless of their structure and origin, they have the same functional units, but there are differences in subcellular mechanisms and adaptations for carnivory. We propose a new type of carnivorous plant trap—a ‘fecal traps—which has unique physiology, morphology, and anatomy for attracting the animals that are the source of excrement and also to retain and use it.


Author(s):  
Matthew C. Fitzpatrick ◽  
Aaron M. Ellison

Climatic change likely will exacerbate current threats to carnivorous plants. However, estimating the severity of climatic change is challenged by the unique ecology of carnivorous plants, including habitat specialization, dispersal limitation, small ranges, and small population sizes. We discuss and apply methods for modeling species distributions to overcome these challenges and quantify the vulnerability of carnivorous plants to rapid climatic change. Results suggest that climatic change will reduce habitat suitability for most carnivorous plants. Models also project increases in habitat suitability for many species, but the extent to which these increases may offset habitat losses will depend on whether individuals can disperse to and establish in newly suitable habitats outside of their current distribution. Reducing existing stressors and protecting habitats where numerous carnivorous plant species occur may ameliorate impacts of climatic change on this unique group of plants.


2014 ◽  
Vol 10 (4) ◽  
pp. 20131024 ◽  
Author(s):  
G. Foot ◽  
S. P. Rice ◽  
J. Millett

The traps of many carnivorous plants are red in colour. This has been widely hypothesized to serve a prey attraction function; colour has also been hypothesized to function as camouflage, preventing prey avoidance. We tested these two hypotheses in situ for the carnivorous plant Drosera rotundifolia . We conducted three separate studies: (i) prey attraction to artificial traps to isolate the influence of colour; (ii) prey attraction to artificial traps on artificial backgrounds to control the degree of contrast and (iii) observation of prey capture by D. rotundifolia to determine the effects of colour on prey capture. Prey were not attracted to green traps and were deterred from red traps. There was no evidence that camouflaged traps caught more prey. For D. rotundifolia , there was a relationship between trap colour and prey capture. However, trap colour may be confounded with other leaf traits. Thus, we conclude that for D. rotundifolia , red trap colour does not serve a prey attraction or camouflage function.


Author(s):  
Aaron M. Ellison ◽  
Lubomír Adamec

The approximately 800 species of carnivorous plant together provide a classic example of convergent evolution. The known carnivorous species and genera represent nine independent angiosperm lineages. They are united by a suite of five essential traits that together make up the ‘carnivorous syndrome:’ (1) capturing or trapping prey in specialized. usually attractive, traps; (2) killing the captured prey; (3) digesting the prey; (4) absorption of metabolites (nutrients) from the killed and digested prey; and (5) use of these metabolites for plant growth and development. Although many other ‘paracarnivorous’ plants have one or two of these traits, only plants that have all five of them that function in a coordinated way can be considered true carnivorous plants.


2020 ◽  
Vol 21 (14) ◽  
pp. 5143
Author(s):  
Bartosz J. Płachno ◽  
Saura R. Silva ◽  
Piotr Świątek ◽  
Kingsley W. Dixon ◽  
Krzystof Lustofin ◽  
...  

Carnivorous plants from the Lentibulariaceae form a variety of standard and novel vegetative organs and survive unfavorable environmental conditions. Within Genlisea, only G. tuberosa, from the Brazilian Cerrado, formed tubers, while Utricularia menziesii is the only member of the genus to form seasonally dormant tubers. We aimed to examine and compare the tuber structure of two taxonomically and phylogenetically divergent terrestrial carnivorous plants: Genlisea tuberosa and Utricularia menziesii. Additionally, we analyzed tubers of U. mannii. We constructed phylogenetic trees using chloroplast genes matK/trnK and rbcL and used studied characters for ancestral state reconstruction. All examined species contained mainly starch as histologically observable reserves. The ancestral state reconstruction showed that specialized organs such as turions evolved once and tubers at least 12 times from stolons in Lentibulariaceae. Different from other clades, tubers probably evolved from thick stolons for sect. Orchidioides and both structures are primarily water storage structures. In contrast to species from section Orchidioides, G. tuberosa, U. menziesii and U. mannii form starchy tubers. In G. tuberosa and U. menziesii, underground tubers provide a perennating bud bank that protects the species in their fire-prone and seasonally desiccating environments.


2018 ◽  
Vol 66 (4) ◽  
pp. 325 ◽  
Author(s):  
Francis J. Nge ◽  
Hans Lambers

Stylidium species (triggerplants) are claimed to be protocarnivorous based on the presence of glandular hairs, observations of trapped small organisms, and induction of proteinase activity. However, these traits might serve alternative functions. We aimed to re-assess and quantify the degree of carnivory for Stylidium species in an ecological context, by comparing the natural abundance (δ15N) of Stylidium species with co-occurring carnivorous (Drosera species) and non-carnivorous plants in their natural habitats. We hypothesised that the δ15N signature of Stylidium species would more closely match co-occurring carnivorous plant species than their non-carnivorous counterparts if they rely on captured organisms as a nutrient source, since there is an increase in fractionation by 3–5 ‰ per trophic level. Our results show that the Stylidium species sampled had δ15N signatures that matched more closely with co-occurring non-carnivorous plants than with carnivorous Drosera species. This does not support the claim that they rely on captured organisms as a nitrogen source, or the source is negligible. Other studies have shown that protocarnivorous species have a δ15N signature that is more similar to that of co-occurring carnivorous than that of non-carnivorous species. Therefore, our findings question the protocarnivory status of Stylidium species.


2014 ◽  
Vol 112 (1) ◽  
pp. 190-195 ◽  
Author(s):  
Eva-Maria Sadowski ◽  
Leyla J. Seyfullah ◽  
Friederike Sadowski ◽  
Andreas Fleischmann ◽  
Hermann Behling ◽  
...  

The fossil record of carnivorous plants is very scarce and macrofossil evidence has been restricted to seeds of the extant aquatic genus Aldrovanda of the Droseraceae family. No case of carnivorous plant traps has so far been reported from the fossil record. Here, we present two angiosperm leaves enclosed in a piece of Eocene Baltic amber that share relevant morphological features with extant Roridulaceae, a carnivorous plant family that is today endemic to the Cape flora of South Africa. Modern Roridula species are unique among carnivorous plants as they digest prey in a complex mutualistic association in which the prey-derived nutrient uptake depends on heteropteran insects. As in extant Roridula, the fossil leaves possess two types of plant trichomes, including unicellular hairs and five size classes of multicellular stalked glands (or tentacles) with an apical pore. The apices of the narrow and perfectly tapered fossil leaves end in a single tentacle, as in both modern Roridula species. The glandular hairs of the fossils are restricted to the leaf margins and to the abaxial lamina, as in extant Roridula gorgonias. Our discovery supports current molecular age estimates for Roridulaceae and suggests a wide Eocene distribution of roridulid plants.


2004 ◽  
Vol 15 (2) ◽  
Author(s):  
Peter Adler ◽  
Björn Malmqvist

Adult back flies represented nearly 85% of 915 arthropods captured by the carnivorous plant Pinguicula vulgaris L. along a stream in northern Sweden. Two species, Cnephia eremites Shewell and Cnephia pallipes (Fries), accounted for more than 97% of the total number of captured black flies. By virtue of their large populations, site fidelity at lake outfalls, and concentrated activity near the ground, these flies provide a predictable supply of prey that could affect the fitness of streamside carnivorous plants.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4322 ◽  
Author(s):  
Gregory L. Wheeler ◽  
Bryan C. Carstens

Carnivorous plants are striking examples of evolutionary convergence, displaying complex and often highly similar adaptations despite lack of shared ancestry. Using available carnivorous plant genomes along with non-carnivorous reference taxa, this study examines the convergence of functional overrepresentation of genes previously implicated in plant carnivory. Gene Ontology (GO) coding was used to quantitatively score functional representation in these taxa, in terms of proportion of carnivory-associated functions relative to all functional sequence. Statistical analysis revealed that, in carnivorous plants as a group, only two of the 24 functions tested showed a signal of substantial overrepresentation. However, when the four carnivorous taxa were analyzed individually, 11 functions were found to be significant in at least one taxon. Though carnivorous plants collectively may show overrepresentation in functions from the predicted set, the specific functions that are overrepresented vary substantially from taxon to taxon. While it is possible that some functions serve a similar practical purpose such that one taxon does not need to utilize both to achieve the same result, it appears that there are multiple approaches for the evolution of carnivorous function in plant genomes. Our approach could be applied to tests of functional convergence in other systems provided on the availability of genomes and annotation data for a group.


Sign in / Sign up

Export Citation Format

Share Document