scholarly journals Profiling gene expression to distinguish the likely active diazotrophs from a sea of genetic potential in marine sediments

2014 ◽  
Vol 16 (10) ◽  
pp. 3128-3142 ◽  
Author(s):  
S. M. Brown ◽  
B. D. Jenkins
Chemosphere ◽  
2017 ◽  
Vol 174 ◽  
pp. 563-571 ◽  
Author(s):  
Said Ben Hamed ◽  
Francisco Guardiola ◽  
Alberto Cuesta ◽  
Salvadora Martínez ◽  
María José Martínez-Sánchez ◽  
...  

Author(s):  
M. Aman Yaman ◽  
Dasrul Dasrul ◽  
Zulfan Zulfan

This study aimed to evaluate the genetic potential of local meat chickens (LMC) to get the candidate of parent stock through the development of the selection method applied, as well as economical and practical approach and adjusment of nutritional requirement, especially protein and energy balance. Research was divided into 2 groups, where the female and male parent was reared for 2 months and the offspring (F1) was reared for 4 months and selected. The parent was mated by the method of artificial insemination (AI). Method of selection was used on the orientation of the meat chicken production parameters with a positive correlation with the gene expression Diet treatments were formulated by optimal nutrition standards in order to drive maximum primary production of local meat chicken, contained 17, 19, and 21% of protein. The result showed that feeding diet with 19% protein can stimulate optimum growth and food conversion of ALPU male, whereas female growth LMC in line with the increasing availability of protein in the diet, wherein feeding 21% of protein result in optimal growth until age 4 months.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2316
Author(s):  
Alaa I. B. Abou-Sreea ◽  
Clara R. Azzam ◽  
Sudad K. Al-Taweel ◽  
Ranya M. Abdel-Aziz ◽  
Hussein E. E. Belal ◽  
...  

A biostimulant is any microorganism or substance used to enhance the efficiency of nutrition, tolerance to abiotic stress and/or quality traits of crops, depending on its contents from nutrients. Plant biostimulants like honey bee (HB) and silymarin (Sm) are a strategic trend for managing stressed crops by promoting nutritional and hormonal balance, regulating osmotic protectors, antioxidants, and genetic potential, reflecting plant growth and productivity. We applied diluted honey bee (HB) and silymarin-enriched honey bee (HB- Sm) as foliar nourishment to investigate their improving influences on growth, yield, nutritional and hormonal balance, various osmoprotectant levels, different components of antioxidant system, and genetic potential of chili pepper plants grown under NaCl-salinity stress (10 dS m‒1). HB significantly promoted the examined attributes and HB-Sm conferred optimal values, including growth, productivity, K+/Na+ ratio, capsaicin, and Sm contents. The antioxidative defense components were significantly better than those obtained with HB alone. Conversely, levels of oxidative stress markers (superoxide ions and hydrogen peroxide) and parameters related to membrane damage (malondialdehyde level, stability index, ionic leakage, Na+, and Cl− contents) were significantly reduced. HB-Sm significantly affects inactive gene expression, as a natural biostimulator silencing active gene expression. SCoT primers were used as proof in salt-treated or untreated chili pepper plants. There were 41 cDNA amplicons selected by SCoT-primers. Twenty of them were EcDNA amplicons (cDNA-amplicons that enhanced their genes by one or more treatments) representing 49% of all cDNA amplicons, whereas 7 amplicons for ScDNA (whose genes were silenced in one or more treatments) represented 17%, and 14 McDNA (monomorphic cDNA-amplicons with control) amplicons were represented by 34% from all cDNA amplicons. This indicates the high effect of BH-Sm treatments in expression enhancement of some inactive genes and their silenced effect for expression of some active genes, also confirming that cDNA-SCoT markers succeeded in detection of variable gene expression patterns between the untreated and treated plants. In conclusion, HB-Sm as a natural multi-biostimulator can attenuate salt stress effects in chili pepper plants by remodeling the antioxidant defense system and ameliorating plant productivity.


Author(s):  
W. K. Jones ◽  
J. Robbins

Two myosin heavy chains (MyHC) are expressed in the mammalian heart and are differentially regulated during development. In the mouse, the α-MyHC is expressed constitutively in the atrium. At birth, the β-MyHC is downregulated and replaced by the α-MyHC, which is the sole cardiac MyHC isoform in the adult heart. We have employed transgenic and gene-targeting methodologies to study the regulation of cardiac MyHC gene expression and the functional and developmental consequences of altered α-MyHC expression in the mouse.We previously characterized an α-MyHC promoter capable of driving tissue-specific and developmentally correct expression of a CAT (chloramphenicol acetyltransferase) marker in the mouse. Tissue surveys detected a small amount of CAT activity in the lung (Fig. 1a). The results of in situ hybridization analyses indicated that the pattern of CAT transcript in the adult heart (Fig. 1b, top panel) is the same as that of α-MyHC (Fig. 1b, lower panel). The α-MyHC gene is expressed in a layer of cardiac muscle (pulmonary myocardium) associated with the pulmonary veins (Fig. 1c). These studies extend our understanding of α-MyHC expression and delimit a third cardiac compartment.


2020 ◽  
Vol 477 (16) ◽  
pp. 3091-3104 ◽  
Author(s):  
Luciana E. Giono ◽  
Alberto R. Kornblihtt

Gene expression is an intricately regulated process that is at the basis of cell differentiation, the maintenance of cell identity and the cellular responses to environmental changes. Alternative splicing, the process by which multiple functionally distinct transcripts are generated from a single gene, is one of the main mechanisms that contribute to expand the coding capacity of genomes and help explain the level of complexity achieved by higher organisms. Eukaryotic transcription is subject to multiple layers of regulation both intrinsic — such as promoter structure — and dynamic, allowing the cell to respond to internal and external signals. Similarly, alternative splicing choices are affected by all of these aspects, mainly through the regulation of transcription elongation, making it a regulatory knob on a par with the regulation of gene expression levels. This review aims to recapitulate some of the history and stepping-stones that led to the paradigms held today about transcription and splicing regulation, with major focus on transcription elongation and its effect on alternative splicing.


Sign in / Sign up

Export Citation Format

Share Document