Higher ratio of extracellular water to total body water was associated with reduced cognitive function in type 2 diabetes

2020 ◽  
Author(s):  
Serena Low ◽  
Tze Pin Ng ◽  
Chin Leong Lim ◽  
Su Fen Ang ◽  
Angela Moh ◽  
...  
Author(s):  
Ikuro Matsuba ◽  
Masahiro Takihata ◽  
Masahiko Takai ◽  
Hajime Maeda ◽  
Akira Kubota ◽  
...  

Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 309-316 ◽  
Author(s):  
Aleksandra Markova ◽  
Mihail Boyanov ◽  
Deniz Bakalov ◽  
Adelina Tsakova

AbstractBackgroundThis study aims to explore the correlations of body mass index (BMI), waist circumference (WC), waist-to-height ratio (WHtR), waist-to-hip ratio (WHR) and body composition with levels of asymmetric dimethylarginine (ADMA), endothelin 1(ET-1), N-terminal brain natriuretic pro-peptide (NT-proBNP) and calculated cardiovascular risks.Methods102 women and 67 men with type 2 diabetes participated. Serum levels of NT-proBNP were measured by electro-hemi-luminescence while ELISA were used for ADMA and ET-1. Cardiovascular risks were calculated using the Framingham Risk Score (FRS), the UKPDS 2.0 and the ADVANCE risk engines. Statistical analysis was performed on an IBM SPSS 19.0.ResultsThe BMI outperformed all other indices of obesity (WC, WHtR, WHR), as well as body composition parameters (body fat%, fat mass, fat free mass and total body water) in relation to the estimated risks for coronary heart disease and stroke, based on different calculators. The correlations of the obesity indices with the serum cardiovascular biomarkers were not significant except for BMI and fat mass versus ET-1, and for fat free mass and total body water versus ADMA.ConclusionsThe WC, WHR, WHtR, BF%, FM and FFM apparently do not add significant information related to the levels of cardiovascular biomarkers or the calculated CV-risks.


PEDIATRICS ◽  
1962 ◽  
Vol 29 (6) ◽  
pp. 883-889
Author(s):  
Wesley M. Clapp ◽  
L. Joseph Butterfield ◽  
Donough O'Brien

Normal values for both total body water and extracellular water have been determined in 86 premature infants aged 1 to 90 days and weighing 940 to 2,435 gm, with use of the techniques of deuterium oxide and bromide dilution. Nine full-term infants aged 1 to 6 days and weighing 2,590 to 4,985 gm were similarly studied. Nine infants with the respiratory distress syndrome and eight infants of toxemic mothers studied in the first 24 hours of life showed no significant difference in their body water compartments in comparison to a control group of normal infants matched for age and weight. Seven infants of diabetic mothers studied in the first 24 hours of life showed a significant decrease in total body water, expressed as percentage of body weight, with a normal intracellular to extracellular water ratio. These data indirectly support other evidence that there is an increase in body fat in these infants at birth. See Table in the PDF file


2013 ◽  
Vol 48 (1) ◽  
pp. 109-117 ◽  
Author(s):  
Dejan Reljic ◽  
Eike Hässler ◽  
Joachim Jost ◽  
Birgit Friedmann-Bette

Context Dehydration is assumed to be a major adverse effect associated with rapid loss of body mass for competing in a lower weight class in combat sports. However, the effects of such weight cutting on body fluid balance in a real-life setting are unknown. Objective To examine the effects of 5% or greater loss of body mass within a few days before competition on body water, blood volume, and plasma volume in elite amateur boxers. Design Case-control study. Setting Sports medicine laboratory. Patients or Other Participants Seventeen male boxers (age = 19.2 ± 2.9 years, height = 175.1 ± 7.0 cm, mass = 65.6 ± 9.2 kg) were assigned to the weight-loss group (WLG; n = 10) or the control group (CON; n = 7). Intervention(s) The WLG reduced body mass by restricting fluid and food and inducing excessive sweat loss by adhering to individual methods. The CON participated in their usual precompetition training. Main Outcome Measure(s) During an ordinary training period (t-1), 2 days before competition (t-2), and 1 week after competition (t-3), we performed bioelectrical impedance measurements; calculated total body water, intracellular water, and extracellular water; and estimated total hemoglobin mass (tHbmass), blood volume, and plasma volume by the CO-rebreathing method. Results In the WLG, the loss of body mass (5.6% ± 1.7%) led to decreases in total body water (6.0% ± 0.9%), extracellular water (12.4% ± 7.6%), tHbmass (5.3% ± 3.8%), blood volume (7.6% ± 2.1%; P < .001), and plasma volume (8.6% ± 3.9%). The intracellular water did not change (P > .05). At t-3, total body water, extracellular water, and plasma volume had returned to near baseline values, but tHbmass and blood volume still were less than baseline values (P < .05). In CON, we found no changes (P > .05). Conclusions In a real-life setting, the loss of approximately 6% body mass within 5 days induced hypohydration, which became evident by the decreases in body water and plasma volume. The reduction in tHbmass was a surprising observation that needs further investigation.


PEDIATRICS ◽  
1961 ◽  
Vol 28 (2) ◽  
pp. 169-181
Author(s):  
B. Friis-Hansen

During growth of infants and children, certain characteristic changes are found. A rapid decrease of the relative volumes of total body water and of extracellular water occurs during the first year of life, followed by a smaller decrease of volume of extracellular water later in childhood. At the same time an increased heterogeneity of the extracellular water takes place. On the other hand, the volume of intracellular water increases a little during the first months of life and remains more or less constant from then on. Formulas and nomograms from which these body water compartments can be predicted are presented. Finally, data on the corresponding changes in the total body water and in body specific gravity are discussed.


2005 ◽  
Vol 33 (3) ◽  
pp. 345-350 ◽  
Author(s):  
M. Balik ◽  
J. Sedivy ◽  
P. Waldauf ◽  
M. Kolar ◽  
V. Smejkalova ◽  
...  

The relationship between the volume of distribution, assessed according to the two-compartmental pharmacokinetic model, and extracellular water estimated by bioimpedance was studied in mechanically ventilated patients with sepsis and capillary leak. A prospective observational study was performed in a twenty-bed general intensive care unit in the university hospital. Patients received either vancomycin (n=16) or netilmicin (n=12) for more than 48 hours. Those with ascites, pleural effusion, on renal replacement therapy or with haemodynamic instability were excluded. Serum concentrations of drugs were taken for pharmacokinetic analysis before, 1 hour and 4 hours after the 30 minute infusion. Bioimpedance measurement was performed at the time of the third sampling. The protocol was repeated after 24 hours. Fluid balance during the 24 hour interval was recorded. Extracellular water was increased and represented 45.6 to 46.6% of total body water. Fluid balance correlated with the change of extracellular water (r=0.82, P<0.0001) and total body water (r=0.74, P<0.0001). Volumes of distribution of vancomycin (0.677±0.339 l/kg) and netilmicin (0.505±0.172 l/kg) were increased compared to normal values. A correlation was demonstrated between volume of distribution (Vdarea) of vancomycin and extra cellular water/total body ratio (r=0.70, P<0.0001). The central compartment distribution volume (V1) of netilmicin correlated with extracellular water/total body water ratio (r=0.60, P<0.003). Serum concentrations above the recommended therapeutic range were detected in 81.2% of patients on vancomycin and in 50% of patients on netilmicin. Increased volumes of distribution can be estimated by the bioimpedance measurements but are not associated with requirements for higher dosage of the glycopeptide or aminoglycoside antibiotics.


Sign in / Sign up

Export Citation Format

Share Document