A mutation modulating DDX3Y gene expression cosegregates with the major Y‐chromosomal haplogroups and with testis size in Hu sheep

2021 ◽  
Author(s):  
Xueying Zhang ◽  
Zhi Liao ◽  
Shijie Tang ◽  
Zehu Yuan ◽  
Fadi Li ◽  
...  
Keyword(s):  
Endocrinology ◽  
2016 ◽  
Vol 157 (3) ◽  
pp. 1276-1288 ◽  
Author(s):  
M. Elena Martinez ◽  
Aldona Karaczyn ◽  
J. Patrizia Stohn ◽  
William T. Donnelly ◽  
Walburga Croteau ◽  
...  

Abstract Timely and appropriate levels of thyroid hormone (TH) signaling are necessary to ensure normal developmental outcomes in many tissues. Studies using pharmacological models of altered TH status have revealed an influence of these hormones on testis development and size, but little is known about the role of endogenous determinants of TH action in the developing male gonads. Using a genetic approach, we demonstrate that the type 3 deiodinase (D3), which inactivates TH and protects developing tissues from undue TH action, is a key factor. D3 is highly expressed in the developing testis, and D3-deficient (D3KO) mice exhibit thyrotoxicosis and cell proliferation arrest in the neonatal testis, resulting in an approximately 75% reduction in testis size. This is accompanied by larger seminiferous tubules, impaired spermatogenesis, and a hormonal profile indicative of primary hypogonadism. A deficiency in the TH receptor-α fully normalizes testis size and adult testis gene expression in D3KO mice, indicating that the effects of D3 deficiency are mediated through this type of receptor. Similarly, genetic deficiencies in the D2 or in the monocarboxylate transporter 8 partially rescue the abnormalities in testis size and gonadal axis gene expression featured in the D3KO mice. Our study highlights the testis as an important tissue in which determinants of TH action coordinately converge to ensure normal development and identifies D3 as a critical factor in testis development and in testicular protection from thyrotoxicosis.


2008 ◽  
Vol 93 (2) ◽  
pp. 619-626 ◽  
Author(s):  
Paul A. Fowler ◽  
Sarah Cassie ◽  
Stewart M. Rhind ◽  
Mark J. Brewer ◽  
J. Martin Collinson ◽  
...  

Abstract Context: Maternal cigarette smoking during gestation increases cryptorchidism and hypospadias and reduces testis size and fertility in sons by unknown mechanisms. Objective: The objective of the study was to determine whether maternal smoking is linked with changes in male human fetal endocrinology, testis gene expression, and liver concentrations of cigarette smoke chemicals. Design: This was an observational study of the male fetus, comparing pregnancies during which the mothers either did or did not smoke. Setting: The study was conducted at the universities of Aberdeen, Glasgow, and Nottingham and Macaulay Institute (Aberdeen). Patients/Participants: Testes, blood, and livers were collected from 69 morphologically normal human male fetuses of women undergoing elective termination of normal second-trimester pregnancies. Main Outcome Measures: Testosterone, human chorionic gonadotropin, LH, and cotinine; expression of 30 reproductive/developmental genes; liver concentrations of 16 polycyclic aromatic hydrocarbons; and Leydig, Sertoli. and germ cell numbers were determined. Results: There were no significant differences in fetal size, testis weight, cell numbers, seminiferous tubule diameter, or circulating LH and testosterone. Fetuses from smoking mothers had smoking range cotinine levels and liver concentrations of polycyclic aromatic hydrocarbons that were significant predictors of maternal smoking (P < 0.001). Only the Sertoli cell-specific gene, desert hedgehog (DHH), was significantly altered by maternal smoking (reduced 1.8-fold, P = 0.013). Conclusions: The consequences of reduced DHH signaling in men and mice are consistent with epidemiology for effects of gestational maternal smoking on sons. Given the absence of other observed effects of maternal smoking, we concluded that reduced DHH is part of a mechanism linking maternal gestational smoking with impaired reproductive development in male offspring.


2017 ◽  
Vol 232 (2) ◽  
pp. 247-257 ◽  
Author(s):  
Valentina Pampanini ◽  
Daniela Germani ◽  
Antonella Puglianiello ◽  
Jan-Bernd Stukenborg ◽  
Ahmed Reda ◽  
...  

Prenatal events such as intrauterine growth restriction can affect gonadal development of the offspring and have an impact on reproductive health. To investigate the effects of intrauterine growth restriction induced by uterine artery ligation on the postnatal rat testis. Pregnant rats underwent uterine artery ligation at day 19 of gestation. Offspring were killed at 5, 20 and 40 days post-partum (dpp). At killing, one gonad was snap-frozen in liquid nitrogen and processed for RNA and steroid extraction. The other gonad was formalin-fixed for histology. Gene expression was analyzed by TaqMan Low-Density Array. Intratesticular testosterone, estradiol and serum gonadotrophins were measured. Thirty genes were dysregulated in intrauterine growth-restricted rats compared to controls, among which markers of Sertoli cell and Leydig cell function, cell metabolism and growth factors. Testis weights were significantly reduced at 5 and 20 dpp in intrauterine growth-restricted rats and caught-up by 40 dpp. Accordingly, Sertoli cell number was significantly lower in 5 dpp intrauterine growth-restricted rats. At 20 dpp, intratesticular testosterone was significantly increased in intrauterine growth-restricted rats, whereas serum gonadotrophins were unchanged. IUGR altered the gene expression in the rat testes up to peripubertal age and reduced testis size and Sertoli cell number in neonatal age. Multiple mechanisms encompassing genetic changes and steroid production by the testis may be involved in the catch-up growth phase that restored testis size by 40 dpp. Permanent consequences on organ function and gamete integrity cannot be excluded and deserve further investigations.


Author(s):  
W. K. Jones ◽  
J. Robbins

Two myosin heavy chains (MyHC) are expressed in the mammalian heart and are differentially regulated during development. In the mouse, the α-MyHC is expressed constitutively in the atrium. At birth, the β-MyHC is downregulated and replaced by the α-MyHC, which is the sole cardiac MyHC isoform in the adult heart. We have employed transgenic and gene-targeting methodologies to study the regulation of cardiac MyHC gene expression and the functional and developmental consequences of altered α-MyHC expression in the mouse.We previously characterized an α-MyHC promoter capable of driving tissue-specific and developmentally correct expression of a CAT (chloramphenicol acetyltransferase) marker in the mouse. Tissue surveys detected a small amount of CAT activity in the lung (Fig. 1a). The results of in situ hybridization analyses indicated that the pattern of CAT transcript in the adult heart (Fig. 1b, top panel) is the same as that of α-MyHC (Fig. 1b, lower panel). The α-MyHC gene is expressed in a layer of cardiac muscle (pulmonary myocardium) associated with the pulmonary veins (Fig. 1c). These studies extend our understanding of α-MyHC expression and delimit a third cardiac compartment.


2020 ◽  
Vol 477 (16) ◽  
pp. 3091-3104 ◽  
Author(s):  
Luciana E. Giono ◽  
Alberto R. Kornblihtt

Gene expression is an intricately regulated process that is at the basis of cell differentiation, the maintenance of cell identity and the cellular responses to environmental changes. Alternative splicing, the process by which multiple functionally distinct transcripts are generated from a single gene, is one of the main mechanisms that contribute to expand the coding capacity of genomes and help explain the level of complexity achieved by higher organisms. Eukaryotic transcription is subject to multiple layers of regulation both intrinsic — such as promoter structure — and dynamic, allowing the cell to respond to internal and external signals. Similarly, alternative splicing choices are affected by all of these aspects, mainly through the regulation of transcription elongation, making it a regulatory knob on a par with the regulation of gene expression levels. This review aims to recapitulate some of the history and stepping-stones that led to the paradigms held today about transcription and splicing regulation, with major focus on transcription elongation and its effect on alternative splicing.


2013 ◽  
Vol 54 ◽  
pp. 79-90 ◽  
Author(s):  
Saba Valadkhan ◽  
Lalith S. Gunawardane

Eukaryotic cells contain small, highly abundant, nuclear-localized non-coding RNAs [snRNAs (small nuclear RNAs)] which play important roles in splicing of introns from primary genomic transcripts. Through a combination of RNA–RNA and RNA–protein interactions, two of the snRNPs, U1 and U2, recognize the splice sites and the branch site of introns. A complex remodelling of RNA–RNA and protein-based interactions follows, resulting in the assembly of catalytically competent spliceosomes, in which the snRNAs and their bound proteins play central roles. This process involves formation of extensive base-pairing interactions between U2 and U6, U6 and the 5′ splice site, and U5 and the exonic sequences immediately adjacent to the 5′ and 3′ splice sites. Thus RNA–RNA interactions involving U2, U5 and U6 help position the reacting groups of the first and second steps of splicing. In addition, U6 is also thought to participate in formation of the spliceosomal active site. Furthermore, emerging evidence suggests additional roles for snRNAs in regulation of various aspects of RNA biogenesis, from transcription to polyadenylation and RNA stability. These snRNP-mediated regulatory roles probably serve to ensure the co-ordination of the different processes involved in biogenesis of RNAs and point to the central importance of snRNAs in eukaryotic gene expression.


2006 ◽  
Vol 73 ◽  
pp. 85-96 ◽  
Author(s):  
Richard J. Reece ◽  
Laila Beynon ◽  
Stacey Holden ◽  
Amanda D. Hughes ◽  
Karine Rébora ◽  
...  

The recognition of changes in environmental conditions, and the ability to adapt to these changes, is essential for the viability of cells. There are numerous well characterized systems by which the presence or absence of an individual metabolite may be recognized by a cell. However, the recognition of a metabolite is just one step in a process that often results in changes in the expression of whole sets of genes required to respond to that metabolite. In higher eukaryotes, the signalling pathway between metabolite recognition and transcriptional control can be complex. Recent evidence from the relatively simple eukaryote yeast suggests that complex signalling pathways may be circumvented through the direct interaction between individual metabolites and regulators of RNA polymerase II-mediated transcription. Biochemical and structural analyses are beginning to unravel these elegant genetic control elements.


Sign in / Sign up

Export Citation Format

Share Document