Staphylococcus aureus-derived extracellular vesicles induce neutrophilic pulmonary inflammation via both Th1 and Th17 cell responses

Allergy ◽  
2012 ◽  
Vol 67 (10) ◽  
pp. 1271-1281 ◽  
Author(s):  
M.-R. Kim ◽  
S.-W. Hong ◽  
E.-B. Choi ◽  
W.-H. Lee ◽  
Y.-S. Kim ◽  
...  
PLoS ONE ◽  
2011 ◽  
Vol 6 (10) ◽  
pp. e25558 ◽  
Author(s):  
Jonathan M. Cohen ◽  
Suneeta Khandavilli ◽  
Emilie Camberlein ◽  
Catherine Hyams ◽  
Helen E. Baxendale ◽  
...  

2011 ◽  
Vol 63 (8) ◽  
pp. 2445-2455 ◽  
Author(s):  
Li-Fei Hou ◽  
Shi-Jun He ◽  
Xin Li ◽  
Yang Yang ◽  
Pei-Lan He ◽  
...  

Critical Care ◽  
2018 ◽  
Vol 22 (1) ◽  
Author(s):  
Jared A. Greenberg ◽  
Cara L. Hrusch ◽  
Mohammad R. Jaffery ◽  
Michael Z. David ◽  
Robert S. Daum ◽  
...  

2020 ◽  
Vol 6 (14) ◽  
pp. eaaw7713 ◽  
Author(s):  
Youhui Si ◽  
Fan Zhao ◽  
Pavani Beesetty ◽  
Daniela Weiskopf ◽  
Zhaotao Li ◽  
...  

Recurrent Staphylococcus aureus infections are common, despite robust immune responses. S. aureus infection elicited protective antibody and T cell responses in mice that expressed the Major Histocompatibility Complex (MHC) of the H-2d haplotype, but not H-2b, demonstrating that host genetics drives individual variability. Vaccination with a-toxin or leukotoxin E (LukE) elicited similar antibody and T cell responses in mice expressing H-2d or H-2b, but vaccine-elicited responses were inhibited by concomitant infection in H-2d–expressing mice. These findings suggested that competitive binding of microbial peptides to host MHC proteins determines the specificity of the immunodominant response, which was confirmed using LukE-derived peptide-MHC tetramers. A vaccine that elicited T cell and antibody responses protected mice that expressed H-2d or H-2b, demonstrating that vaccination can overcome MHC-restricted immunodominance. Together, these results define how host genetics determine whether immunity elicted by S. aureus is protective and provide a mechanistic roadmap for future vaccine design.


2019 ◽  
Vol 317 (5) ◽  
pp. G739-G749 ◽  
Author(s):  
Harmeet Malhi

Extracellular vesicles (EVs) are membrane-defined nanoparticles released by most cell types. The EVs released by cells may differ quantitatively and qualitatively from physiological states to disease states. There are several unique properties of EVs, including their proteins, lipids and nucleic acid cargoes, stability in circulation, and presence in biofluids, which make them a critical vector for cell-to-cell communication and impart utility as a biomarker. EVs may also serve as a vehicle for selective cargo secretion. Similarly, EV cargo may be selectively manipulated for targeted therapeutic delivery. In this review an overview is provided on the EV classification, biogenesis, and secretion pathways, which are conserved across cell types. Next, cargo characterization and effector cell responses are discussed in the context of nonalcoholic steatohepatitis, alcoholic hepatitis, and acetaminophen-induced liver injury. The review also discusses the potential biomarker and therapeutic uses of circulating EVs.


2019 ◽  
Vol 88 (1) ◽  
Author(s):  
Payal P. Balraadjsing ◽  
Lisbeth D. Lund ◽  
Yuri Souwer ◽  
Sebastian A. J. Zaat ◽  
Hanne Frøkiær ◽  
...  

ABSTRACT Staphylococcus aureus has evolved different strategies to evade the immune response, which play an important role in its pathogenesis. The bacteria express and shed various cell wall components and toxins during different stages of growth that may affect the protective T cell responses to extracellular and intracellular S. aureus. However, if and how the dendritic cell (DC)-mediated T cell response against S. aureus changes during growth of the bacterium remain elusive. In this study, we show that exponential-phase (EP) S. aureus bacteria were endocytosed very efficiently by human DCs, and these DCs strongly promoted production of the T cell polarizing factor interleukin-12 (IL-12). In contrast, stationary-phase (SP) S. aureus bacteria were endocytosed less efficiently by DCs, and these DCs produced small amounts of IL-12. The high level of IL-12 production induced by EP S. aureus led to the development of a T helper 1 (Th1) cell response, which was inhibited after neutralization of IL-12. Furthermore, preincubation with the staphylococcal cell wall component peptidoglycan (PGN), characteristically shed during the exponential growth phase, modulated the DC response to EP S. aureus. PGN preincubation appeared to inhibit IL-12p35 expression, leading to downregulation of IL-12 and an increase of IL-23 production by DCs, enhancing Th17 cell development. Taken together, our data indicate that exponential-phase S. aureus bacteria induce a stronger IL-12-dependent Th1 cell response than stationary-phase S. aureus and that this Th1 cell response shifted toward a Th17 cell response in the presence of PGN.


Sign in / Sign up

Export Citation Format

Share Document