The impact of the Italian Space Agency on scientific knowledge: Evidence from academic publications

Author(s):  
Davide Vurchio ◽  
Anna Giunta
2020 ◽  
Author(s):  
Simone Simonetti ◽  
Simone Pirrotta ◽  
Marilena Amoroso ◽  
Simone Pizzurro ◽  
Gabriele Impresario ◽  
...  

<p>The Double Asteroid Redirection Test (DART) mission is part of the plan developed by NASA for the Planetary Defence program, since space mission towards asteroid have become crucial to study their composition. Moreover, these missions are the future of space exploration, providing opportunities for testing novel technologies for extreme conditions. These are some of the many reasons why NASA developed the Double Asteroid Redirection Test (DART) mission and the Italian Space Agency joined the effort. DART is a spacecraft acting as a kinetic impactor that will deflect the orbit of a binary asteroid by crashing itself into the moonlet of the Didymos binary system. In order to increase the accuracy of the deflection measurement, the ASI 6U Light Italian CubeSat for Imaging of Asteroid (LICIACube) will be carried on DART and released by the main probe in proximity of the target. The effects of the impact will be observed also from ground-based telescopes. The small satellite that will be the only witness of this event, LICIACube, is an Italian Space Agency project, and has been designed, integrated and tested by the assigned aerospace company Argotec. The primary objective of LICIACube is to capture photographs of DART impact ejecta plume over a span of times and phase angles in order to confirm the DART impact on the secondary body of the Didymos binary asteroid system and to observe the ejecta plume dynamics. After the deployment from the DART spacecraft, LICIACube will perform braking manoeuvers, to increase the relative velocity with respect to DART spacecraft, allowing LICIACube to perform the scientific phase and fulfil the mission objectives. Following this phase, the LICIACube satellite will continue on its path for few months, transferring scientific data and performing radio-science experiments. Many of the scientific objectives will be accomplished by using the autonomous navigation algorithm and the imaging capabilities provided by the baseline platform, based on the heritage of the Argotec company. The images acquired by LICIACube will help the Italian involved scientific community to obtain relevant discoveries about the binary asteroid system.</p> <p>The mission is articulated in a series of single critical moments: LICIACube will be deployed by DART 120 hours before the impact on Didymos B; the satellite will fly-by the asteroid with a relative velocity of 6.5 km/s, and it will document the effects of the impact, the crater and the evolution of the plume generated by the collision. To acquire images with the best spatial resolution, LICIACube will aim at fly-bying the asteroid close to the Didymos-B surface: considering the high relative velocity at the close approach, LICIACube will have to maintain the asteroid's pointing at an angular speed of approximately 10 deg/s. Scientific objectives will be accomplished by using the autonomous navigation algorithm and the imaging capabilities provided by the platform, based on the heritage of the Argotec company. The two optical payloads embarked on LICIACube have the duty of acquiring the images that are then processed on board through the navigation algorithm, thus allowing to identify the asteroid system, distinguish the main and secondary bodies and control the satellite attitude in order to keep the asteroid pointing during fly-by. The navigation algorithm is mainly based on neural network trained on ground using photorealistic images of the binary asteroid system and the plume generated by the impact.</p> <p>The images acquired and downlinked by the LICIACube satellite will help the scientific community to obtain more detailed results about the binary asteroid, and provide feedback to the Planetary Defense program, pioneered by the Space Agencies. The scientific team is enriched by University of Bologna team, supporting the orbit determination and the satellite navigation, Polytechnic of Milan, for mission analysis support and optimization and INAF (National Institute of Astrophysics), providing support in the scientific operations of the satellite. The LICIACube mission will be a challenging opportunity for the entire Italian technical and scientific community leading to the implementation of a deep space mission based on a small scale but highly technological platform.</p>


2020 ◽  
Author(s):  
Vincenzo Corte ◽  
Elena Mazzotta Epifani ◽  
Elisabetta Dotto ◽  
Marilena Amoroso ◽  
Simone Pirrotta ◽  
...  

<p>The NASA Double Asteroid Redirection Test (DART) mission will be the first test to check an asteroid deflection by a kinetic impactor. The target of DART mission is the secondary element of the (65803) Didymos binary asteroid system and the impact is expected in late September – early October, 2022. The DART S/C will carry a 6U cubesat called LICIACube (Light Italian Cubesat for Imaging of Asteroid), provided by the Italian Space Agency, with the aim to collect pictures of the impact’s effects. The impact of the 610 kg DART spacecraft at 6.58 km/s on the 163 m Didymos B will result in a change of the binary orbital period of about 10 minutes assuming momentum transfer efficiency β = 1. Values of β > 1 are expected because the produced ejecta carries momentum, primarily in the direction opposite the DART speed direction. The LICIACube mission profile consists in a flyby of Didymos system with closest approach about 3 minutes after the DART impact. LICIACube will be able to acquire the structure and evolution of the DART impact ejecta plume and will obtain high-resolution images and also in 3 colour of the surfaces of both bodies. The nominal mission foresees also imaging of the Dydymos B non-impact hemisphere. The contributions of LICIACube observations to the DART investigations are important for determination of the momentum transfer efficiency β, that is a crucial result of the planetary defence test. Moreover, captured images can enable scientific investigations about the main features of the asteroid system. </p><p>In order to check the imaging capability and to optimize the fast scientific phase of LICIAcube, the LICIA team performed several simulations of pictures’ acquisition. In these simulations, considering the specifications of the 2 optical payloads and the foreseen mission design, we reconstructed synthetic images mainly of the plume. As the plume evolution remains the most important uncertainty, since it depends on a very high number of impacting phase parameters, we simulated imaging of different expected evolution behaviours, to obtain instrument operative parameters and to prepare the data analysis.  </p>


2020 ◽  
pp. 147387162098012
Author(s):  
Alon Friedman

Scholars in scientific disciplines face unique challenges in the creation of visualizations, especially in publications that require insights derived from analyses to be visually displayed. The literature on visualizations describes different techniques and best practices for the creation of graphs. However, these techniques have not been used to evaluate the impact of visualizations in academic publications. In the field of ecology, as in other scientific fields, graphs are an essential part of journal articles. Little is known about the connections between the kind of data presented and domain in which the researchers conducted their study that together produces the visual graphics. This study focused on articles published in the Journal of Ecology between 1996 and 2016 to explore possible connections between data type, domain, and visualization type. Specifically, this study asked three questions: How many of the graphics published between 1996 and 2016 follow a particular set of recommendations for best practices? What can Pearson correlations reveal about the relationships between type of data, domain of study, and visual displays? Can the findings be examined through an inter-reliability test lens? Out of the 20,080 visualizations assessed, 54% included unnecessary graphical elements in the early part of the study (1996–2010). The most common type of data was univariate (35%) and it was often displayed using line graphs. Twenty-one percent of the articles in the period studied could be categorized under the domain type “single species.” Pearson correlation analysis showed that data type and domain type was positively correlated ( r = 0.08; p ≤ 0.05). Cohen’s kappa for the reliability test was 0.86, suggesting good agreement between the two categories. This study provides evidence that data type and domain types are equally important in determining the type of visualizations found in scientific journals.


2021 ◽  
Vol 13 (11) ◽  
pp. 5882
Author(s):  
Rita Yi Man Li ◽  
Yi Lut Li ◽  
M. James C. Crabbe ◽  
Otilia Manta ◽  
Muhammad Shoaib

We argue that environmental legislation and regulation of more developed countries reflects significantly their moral values, but in less developed countries it differs significantly from their moral values. We examined this topic by using the keywords “sustainability” and “sustainable development”, studying web pages and articles published between 1974 to 2018 in Web of Science, Scopus and Google. Australia, Zimbabwe, and Uganda were ranked as the top three countries in the number of Google searches for sustainability. The top five cities that appeared in sustainability searches through Google are all from Africa. In terms of academic publications, China, India, and Brazil record among the largest numbers of sustainability and sustainable development articles in Scopus. Six out of the ten top productive institutions publishing sustainable development articles indexed in Scopus were located in developing countries, indicating that developing countries are well aware of the issues surrounding sustainable development. Our results show that when environmental law reflects moral values for betterment, legal adoption is more likely to be successful, which usually happens in well-developed regions. In less-developed states, environmental law differs significantly from moral values, such that changes in moral values are necessary for successful legal implementation. Our study has important implications for the development of policies and cultures, together with the enforcement of environmental laws and regulations in all countries.


2021 ◽  
Author(s):  
Zsófia Adrienn Kovács ◽  
János Mészáros ◽  
Mátyás Árvai ◽  
Annamária Laborczi ◽  
Gábor Szatmári ◽  
...  

<p>The estimation of the soil organic carbon (SOC) content plays an important role for carbon sequestration in the context of climate change and soil degradation. Reflectance spectroscopy has proven to be promising technique for SOC quantification in the laboratory and increasingly from air and spaceborne platforms, where hyperspectral imagery provides great potential for mapping SOC on larger scales.</p><p>The PRISMA (PRecursore IperSpettrale della Missione Applicativa) is an earth-observation satellite with a medium spatial resolution hyperspectral radiometer onboard, developed and maintained by the Italian Space Agency.</p><p>The Pan-European Land Use/ Land Cover Area Frame Survey (LUCAS) topsoil database contains soil physical, chemical and spectral data for most European countries. Based on the LUCAS points located in Hungary, a synthetized spectral dataset was created and matched to the spectral characteristic of PRISMA sensor, later used for building up machine learning based models (random forest, artificial neural network). SOC levels for the sample area was predicted using generated models and mainly PRISMA imagery.</p><p>Our sample imagery data was generated from five consecutive, cloud-free PRISMA images covering 4500 km<sup>2</sup> in the central part of the Great Plain in Hungary, which is one of the most important agricultural areas of the country, used mainly for crops on arable lands. The images were recorded in 2020 February when most croplands are not covered by vegetation therefore our tests were implemented on bare soils.</p><p>We tested the prediction accuracy of hyperspectral imagery data supplemented by various environmental datasets as additional predictor variables in four scenarios: (i) using solely hyperspectral imagery data (ii) spectral imagery data, elevation and its derived parameters (e.g. slope, aspect, topographic wetness index etc.) (iii) spectral imagery data and land-use information and (iv) all aforementioned data in fusion.</p><p>For validation two types of datasets were used: (i) measured data at the observation sites of the Hungarian Soil Information and Monitoring System and (ii) the recently compiled national SOC maps., which provides a suitable and formerly tested spatial representation of the carbon stock of the Hungarian soils.</p><p> </p><p><strong>Acknowledgment:</strong> Our research was supported by the Cooperative Doctoral Programme for Doctoral Scholarships (1015642) and by the OTKA thematic research projects K-131820 and K-124290 of the Hungarian National Research, Development and Innovation Office and by the Scholarship of Human Resource Supporter (NTP-NFTÖ-20-B-0022). Our project carried out using PRISMA Products, © of the Italian Space Agency (ASI), delivered under an ASI License to use.</p>


2021 ◽  
Author(s):  
Jiasheng You ◽  
Chao Liu ◽  
Yixin Chen ◽  
Weifen Zhu ◽  
Shunwu Fan ◽  
...  

Abstract Background: Citation analysis is a bibliometric method for appraising the impact of academic publications in any given scientific discipline. There is a paucity of literature concerning influential works on diabetic foot ulcers (DFUs). Aims: To determine the top-cited articles in the field of DFU research.Methods: A bibliometric analysis of citations indexed in the Scopus and the Web of Science databases was conducted in January 2021 to determine all publications related to DFU. The 50 top-cited articles that met the inclusion criteria were ranked. Articles were evaluated for several characteristics including year of publication, country of origin, authorship, publishing journal, topic categories, publishing type and level of evidence.Results: The median number of citations per article in the list was 442 (interquartile range [IQR], 320-520), with a median of 21.8 citations (IQR, 16.5-34.5) per year since publication. The publication years ranged from 1986 to 2017, with 1998 accounting for the greatest number of studies (n = 7). The citation classics were published in 20 journals and originated from institutions in nine countries. The majority of the studies were clinical, of which expert-opinion/review with Level V evidence and clinical studies with Levels I and II evidence comprised the greater proportion in the list.Conclusions: This study identified the top-cited articles and provides useful insights into the history and development of DFU research. Our findings may serve as a quick reference for education curriculums and clinical practice, in addition to providing a foundation for further studies on this topic.


2009 ◽  
Vol 2 (1) ◽  
pp. 87-98 ◽  
Author(s):  
C. Lerot ◽  
M. Van Roozendael ◽  
J. van Geffen ◽  
J. van Gent ◽  
C. Fayt ◽  
...  

Abstract. Total O3 columns have been retrieved from six years of SCIAMACHY nadir UV radiance measurements using SDOAS, an adaptation of the GDOAS algorithm previously developed at BIRA-IASB for the GOME instrument. GDOAS and SDOAS have been implemented by the German Aerospace Center (DLR) in the version 4 of the GOME Data Processor (GDP) and in version 3 of the SCIAMACHY Ground Processor (SGP), respectively. The processors are being run at the DLR processing centre on behalf of the European Space Agency (ESA). We first focus on the description of the SDOAS algorithm with particular attention to the impact of uncertainties on the reference O3 absorption cross-sections. Second, the resulting SCIAMACHY total ozone data set is globally evaluated through large-scale comparisons with results from GOME and OMI as well as with ground-based correlative measurements. The various total ozone data sets are found to agree within 2% on average. However, a negative trend of 0.2–0.4%/year has been identified in the SCIAMACHY O3 columns; this probably originates from instrumental degradation effects that have not yet been fully characterized.


2021 ◽  
Author(s):  
Nicolas Mangold ◽  
Livio Tornabene ◽  
Susan Conway ◽  
Anthony Guimpier ◽  
Axel Noblet ◽  
...  

<p>Antoniadi basin is a 330 km diameter Noachian basin localized in the East of Arabia Terra that contains a network of ridges with a tree-like organization. Branched ridges, such as these can form by a variety of processes including the inversion of fluvial deposits, thus potentially highlighting aqueous processes of interest for understanding Mars’ climate evolution. Here, we test this hypothesis by analyzing in details data from Colour and Stereo Surface Imaging System (CaSSIS), High Resolution Imaging Science Experiment (HiRISE) and High Resolution Stereo Camera (HRSC).</p><p>Branched ridges are up to 10 km long and from 10 to 200 m wide without obvious organization in width. The branched ridges texture is rubbly with the occurrence of blocks up to ~1 m in size and a complete lack of layering. A HiRISE elevation model shows the local slope is of 0.2° toward South, and thus contrary to the apparent network organization (assuming tributary flows). There is no indication of exhumation of these ridges from layers below the current plains surface. Our observations are not consistent with the interpretation of digitate landforms such as inverted channels: (i) The rubbly texture lacking any layering at meter scale is distinct from inverted channels as observed elsewhere on Mars. (ii) Heads of presumed inverted channels display a lobate shape unlike river springs. (iii) There is no increase in width from small branches toward North as expected for channels with increasing discharge rates downstream. (iv) The slope toward South is contrary to the inferred flow direction to the North. The detailed analysis of these branched ridges shows many characteristics difficult to reconcile with inverted channels formed by fluvial channels flowing northward. Subglacial drainages are known to locally flow against topography, but they are rarely dendritic.<strong> </strong>Assuming that deposition occurred along the current slope, thus from North to South, the organization of the network requires a control by distributary channels rather than tributary ones. Distributary channels are possible for fluvial flows, but generally limited to braiding regimes or deltaic deposits, of which no further evidence is observed here. The lobate digitate shapes of the degree 1 branches are actually more in line with deposits of viscous flows, thus as terminal branches. Such an interpretation is consistent with lava or mudflows that formed along the current topography. The next step in this study will be to determine more precisely the rheology of these unusual flows.</p><p><strong>Acknowledgments:</strong> French authors are supported by the CNES. The authors wish to thank the spacecraft and instrument engineering teams. CaSSIS is a project of the University of Bern and funded through the Swiss Space Office via ESA’s PRODEX. The instrument hardware development was also supported by the Italian Space Agency (ASI) (agreement no. I/018/12/0), INAF/Astronomical Observatory of Padova, and the Space Research Center (CBK) in Warsaw. Support from SGF (Budapest), the Univ. of Arizona (Lunar and Planet. Lab.) and NASA are gratefully acknowledged.</p>


2020 ◽  
Author(s):  
Doug Carroll

Energy Efficiency of Vehicles educates readers about energy and the environment and the relationship between the energy we use and the environment. The world is at a point in time when people need to make very important decisions about energy in the next few decades. This book enables readers to utilize our scientific knowledge to make good rational decisions. Energy Efficiency of Vehicles provides information on: Calculations related to energy, power, and efficiency, and the impact of using different types of energy on the environment. Environmental consequences of consuming energy. Models related to impact of city driving on the energy efficiency and fuel economy of cars and trucks.


Sign in / Sign up

Export Citation Format

Share Document