scholarly journals Effects of culture conditions on larval growth and survival of stalked barnacles (Pollicipes pollicipes )

2016 ◽  
Vol 48 (6) ◽  
pp. 2920-2933 ◽  
Author(s):  
Sofia C Franco ◽  
Nick Aldred ◽  
Teresa Cruz ◽  
Anthony S Clare

Diversity ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 69 ◽  
Author(s):  
Christopher Murray ◽  
Hannes Baumann

Concurrent ocean warming and acidification demand experimental approaches that assess biological sensitivities to combined effects of these potential stressors. Here, we summarize five CO2 × temperature experiments on wild Atlantic silverside, Menidia menidia, offspring that were reared under factorial combinations of CO2 (nominal: 400, 2200, 4000, and 6000 µatm) and temperature (17, 20, 24, and 28 °C) to quantify the temperature-dependence of CO2 effects in early life growth and survival. Across experiments and temperature treatments, we found few significant CO2 effects on response traits. Survival effects were limited to a single experiment, where elevated CO2 exposure reduced embryo survival at 17 and 24 °C. Hatch length displayed CO2 × temperature interactions due largely to reduced hatch size at 24 °C in one experiment but increased length at 28 °C in another. We found no overall influence of CO2 on larval growth or survival to 9, 10, 15 and 13–22 days post-hatch, at 28, 24, 20, and 17 °C, respectively. Importantly, exposure to cooler (17 °C) and warmer (28 °C) than optimal rearing temperatures (24 °C) in this species did not appear to increase CO2 sensitivity. Repeated experimentation documented substantial inter- and intra-experiment variability, highlighting the need for experimental replication to more robustly constrain inherently variable responses. Taken together, these results demonstrate that the early life stages of this ecologically important forage fish appear largely tolerate to even extreme levels of CO2 across a broad thermal regime.



Blood ◽  
1995 ◽  
Vol 85 (4) ◽  
pp. 963-972 ◽  
Author(s):  
MO Muench ◽  
MG Roncarolo ◽  
S Menon ◽  
Y Xu ◽  
R Kastelein ◽  
...  

The effects of the recently identified FLK-2/FLT-3 ligand (FL) on the growth of purified human fetal liver progenitors were investigated under serum-deprived culture conditions. FL alone was found to stimulate modest proliferation in short-term cultures of CD34++ CD38+ lineage (Lin)- light-density fetal liver (LDFL) cells and the more primitive CD34++ CD38- Lin- LDFL cells. However, the low levels of growth induced by FL were insufficient for colony formation in clonal cultures. Synergism between FL and either granulocyte-macrophage colony- stimulating factor (GM-CSF), interleukin-3 (IL-3) or KIT ligand (KL) was observed in promoting the growth of high-proliferative potential (HPP) colony-forming cells (CF) and/or low-proliferative potential (LPP)-CFC in cultures of CD34++ CD38+ Lin- and CD34++ CD38- Lin- LDFL- cells. FL, alone or in combination with other cytokines, was not found to affect the growth of CD34+ Lin- LDFL cells, the most mature subpopulation of fetal liver progenitors investigated. The growth of the most primitive subset of progenitors studied, CD34++ CD38- Lin- LDFL cells, required the interactions of at least two cytokines, because only very low levels of growth were observed in response to either FL, GM-CSF, IL-3 or KL alone. However, the results of delayed cytokine-addition experiments suggested that individually these cytokines did promote the survival of this early population of progenitors. Although two-factor combinations of FL, KL, and GM-CSF were observed to promote the growth of early progenitors in a synergistic manner, neither of these factors was found to make fetal liver progenitors more responsive to suboptimal concentrations of a second cytokine. Only myeloid cells were recovered from liquid cultures of CD34++ CD38- Lin- LDFL cells grown in the presence of combinations of FL, KL, and GM-CSF. These results indicate that FL is part of a network of growth factors that regulate the growth and survival of early hematopoietic progenitors.



2020 ◽  
Vol 18 ◽  
pp. 100526
Author(s):  
Hui Wang ◽  
Chaopeng Xue ◽  
Long Wang ◽  
Yi Zhang ◽  
Nengwei Zang ◽  
...  


Reproduction ◽  
2011 ◽  
Vol 141 (6) ◽  
pp. 809-820 ◽  
Author(s):  
Candace M Tingen ◽  
Sarah E Kiesewetter ◽  
Jennifer Jozefik ◽  
Cristina Thomas ◽  
David Tagler ◽  
...  

Innovations in in vitro ovarian follicle culture have revolutionized the field of fertility preservation, but the successful culturing of isolated primary and small secondary follicles remains difficult. Herein, we describe a revised 3D culture system that uses a feeder layer of ovarian stromal cells to support early follicle development. This culture system allows significantly improved primary and early secondary follicle growth and survival. The stromal cells, consisting mostly of thecal cells and ovarian macrophages, recapitulate the in vivo conditions of these small follicles and increase the production of androgens and cytokines missing from stromal cell-free culture conditions. These results demonstrate that small follicles have a stage-specific reliance on the ovarian environment, and that growth and survival can be improved in vitro through a milieu created by pre-pubertal ovarian stromal cell co-culture.



2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Angela Maria Cozzolino ◽  
Valeria Noce ◽  
Cecilia Battistelli ◽  
Alessandra Marchetti ◽  
Germana Grassi ◽  
...  

In many cell types, several cellular processes, such as differentiation of stem/precursor cells, maintenance of differentiated phenotype, motility, adhesion, growth, and survival, strictly depend on the stiffness of extracellular matrix that,in vivo, characterizes their correspondent organ and tissue. In the liver, the stromal rigidity is essential to obtain the correct organ physiology whereas any alteration causes liver cell dysfunctions. The rigidity of the substrate is an element no longer negligible for the cultivation of several cell types, so that many data so far obtained, where cells have been cultured on plastic, could be revised. Regarding liver cells, standard culture conditions lead to the dedifferentiation of primary hepatocytes, transdifferentiation of stellate cells into myofibroblasts, and loss of fenestration of sinusoidal endothelium. Furthermore, standard cultivation of liver stem/precursor cells impedes an efficient execution of the epithelial/hepatocyte differentiation program, leading to the expansion of a cell population expressing only partially liver functions and products. Overcoming these limitations is mandatory for any approach of liver tissue engineering. Here we propose cell lines asin vitromodels of liver stem cells and hepatocytes and an innovative culture method that takes into account the substrate stiffness to obtain, respectively, a rapid and efficient differentiation process and the maintenance of the fully differentiated phenotype.



2008 ◽  
Vol 39 (5) ◽  
pp. 552-556 ◽  
Author(s):  
Raghavan Gireesh ◽  
Cherukara Purushothaman Gopinathan


1996 ◽  
Vol 74 (6) ◽  
pp. 1122-1129 ◽  
Author(s):  
Anne C. Chazal ◽  
John D. Krenz ◽  
David E. Scott

Intraspecific competition and enzyme variability have been observed to influence the bioenergetics of many organisms. In amphibians, larval growth affects body size at metamorphosis, which in turn can lead to differences in adult survival and fecundity. We manipulated larval density in a population of the marbled salamander, Ambystoma opacum, and measured body size and enzyme variability in surviving newly metamorphosed juveniles. Crowded larval conditions resulted in lower survival and smaller body sizes at metamorphosis. Multilocus heterozygosity showed no relation to body size at high larval densities; however, at low larval densities relatively homozygous animals were larger. There was a significant interaction between heterozygosity and larval density in their effects on larval traits. Competition had a greater effect on body size at metamorphosis than did heterozygosity. Survival may be enhanced by heterozygosity but in a manner unrelated to body size.



Sign in / Sign up

Export Citation Format

Share Document