scholarly journals The conundrum of pharyngeal teeth origin: the role of germ layers, pouches, and gill slits

2021 ◽  
Author(s):  
Ann Huysseune ◽  
Robert Cerny ◽  
P. Eckhard Witten
Keyword(s):  
2000 ◽  
Vol 54 (6) ◽  
pp. 1019-1022 ◽  
Author(s):  
S. Seely
Keyword(s):  

2009 ◽  
Vol 21 (1) ◽  
pp. 233
Author(s):  
T. A. L. Brevini ◽  
G. Pennarossa ◽  
S. Antonini ◽  
F. Gandolfi

Leukemia inhibitory factor (LIF), its receptor heterodimer (LRβ-gp130), and the related signal transducer and activator of transcription-3 (STAT3) constitute a system controlling self-renewal and pluripotency of embryonic stem cells (ESC) in the mouse, where LIF withdrawal or direct inhibition of STAT3 causes ESC differentiation. By contrast, several studies have demonstrated that LIF is not required to maintain human ESC pluripotency. Scattered information is available in other species, and data on the role of LIF in pig ESC are scanty. The aims of the present study were (a) to characterize the expression profile of gp130, LRβ, and STAT3 in pig parthenogenetic cell lines (ppC), previously derived in our laboratory and shown to be positive for the main pluripotency related markers; (b) to evaluate the role of LIF pathway in maintaining the pluripotency of these cells. To this purpose, ppC were cultured as previously described (Brevini et al. 2007 Theriogenology 68, 206–214) and screened by RT-PCR for the two LIF receptor subunits (LRβ and gp130) and STAT3. Pig granulosa cells were used as positive controls. To better investigate the possible role of LIF in maintenance of pluripotency in ppC, the formation of embryoid bodies (EB) was induced in the presence or in the absence of the cytokine. Undifferentiated cells were cultured in hanging drops either with or without LIF for 12 days. The EB formation and the expression of molecular markers specific for the three germ layers was evaluated at the end of the differentiation period. Molecular analysis allowed us to detect transcription of STAT3, whereas no signal for LRβ and gp130 was detected in ppC. These results seem to indicate that LIF does not play a role in the maintenance of pluripotency in the pig. However, after removal of LIF, ppC routinely formed EB that expressed molecular markers specific for the three germ layers. On the other hand, when LIF was added to the differentiation medium, pig cells were unable to form EB. They kept proliferating in an undifferentiated state, and no expression of molecular markers specific for the three germ layers was detected. Moreover, when re-plated on inactivated feeder-layers, they formed distinct colonies that maintained expression of pluripotency markers. Our results show that a role of LIF in pluripotency maintenance through a classical LRβ-gp130 and STAT3 activation pathway is unlikely. However, interaction with an alternative nonclassical activation signaling pathway cannot be ruled out. Indeed, the presence of the cytokine in the medium used for differentiation experiments actively inhibited EB formation, indicating a possible role in preventing differentiation in the porcine species. Further studies are needed to elucidate these aspects. Supported by: PRIN2005; PRIN2006; First 2006; First2007.


2021 ◽  
Vol 22 (9) ◽  
pp. 4832
Author(s):  
Jo-Chi Hung ◽  
Jen-Leih Wu ◽  
Jiann-Ruey Hong

The BH3-only molecule Bad regulates cell death via its differential protein phosphorylation, but very few studies address its effect on early embryonic development in vertebrate systems. In this work, we examined the novel role of zebrafish Bad in the initial programmed cell death (PCD) for brain morphogenesis through reducing environmental stress and cell death signaling. Bad was considered to be a material factor that because of the knockdown of Bad by morpholino oligonucleotides, PCD was increased and the reactive oxygen species (ROS) level was enhanced, which correlated to trigger a p53/caspase-8 involving cell death signaling. This Bad knockdown-mediated environmental stress and enhanced cell dying can delay normal cell migration in the formation of the three germ layers, especially the ectoderm, for further brain development. Furthermore, Bad defects involved in three-germ-layers development at 8 hpf were identified by in situ hybridization approach on cyp26, rtla, and Sox17 pattern expression markers. Finally, the Bad knockdown-induced severely defected brain was examined by tissue section from 24 to 48 h postfertilization (hpf), which correlated to induce dramatic malformation in the hindbrain. Our data suggest that the BH3-only molecule Bad regulates brain development via controlling programmed cell death on overcoming environmental stress for reducing secondary cell death signaling, which suggests that correlates to brain developmental and neurological disorders in this model system.


Cell ◽  
1998 ◽  
Vol 94 (4) ◽  
pp. 515-524 ◽  
Author(s):  
Jian Zhang ◽  
Douglas W Houston ◽  
Mary Lou King ◽  
Christopher Payne ◽  
Christopher Wylie ◽  
...  
Keyword(s):  

Author(s):  
Jusong Kim ◽  
Jaewon Kim ◽  
Hee Jung Lim ◽  
Sanghyuk Lee ◽  
Yun Soo Bae ◽  
...  

AbstractReactive oxygen species (ROS) play important roles as second messengers in a wide array of cellular processes including differentiation of stem cells. We identified Nox4 as the major ROS-generating enzyme whose expression is induced during differentiation of embryoid body (EB) into cells of all three germ layers. The role of Nox4 was examined using induced pluripotent stem cells (iPSCs) generated from Nox4 knockout (Nox4−/−) mouse. Differentiation markers showed significantly reduced expression levels consistent with the importance of Nox4-generated ROS during this process. From transcriptomic analyses, we found insulin-like growth factor 2 (IGF2), a member of a gene family extensively involved in embryonic development, as one of the most down-regulated genes in Nox4−/− cells. Indeed, addition of IGF2 to culture partly restored the differentiation competence of Nox4−/− iPSCs. Our results reveal an important signaling axis mediated by ROS in control of crucial events during differentiation of pluripotent stem cells. Graphical Abstract


Author(s):  
Drew Owen ◽  
Evan Zamir

Actin-myosin contraction has been shown to play a major role in early morphogenetic movements in Drosophila (fly) and Xenopus (frog) [1,2]. However, the specific role of actomyosin contractility in amniote embryos (reptiles, birds, and mammals) during primitive streak (PS) formation, the “organizing center” for gastrulation (formation of three primary germ layers), is not known. Current theories regarding primitive streak formation in higher order amniotes center around cell-cell intercalation or chemotactic cell movement [3,4]. We hypothesize that contraction via actin-myosin (AM) filaments is conserved from anamniotes and drives formation of the PS and the associated morphogenetic cell movements.


JAMA ◽  
1966 ◽  
Vol 195 (12) ◽  
pp. 1005-1009 ◽  
Author(s):  
D. J. Fernbach
Keyword(s):  

JAMA ◽  
1966 ◽  
Vol 195 (3) ◽  
pp. 167-172 ◽  
Author(s):  
T. E. Van Metre

2018 ◽  
Vol 41 ◽  
Author(s):  
Winnifred R. Louis ◽  
Craig McGarty ◽  
Emma F. Thomas ◽  
Catherine E. Amiot ◽  
Fathali M. Moghaddam

AbstractWhitehouse adapts insights from evolutionary anthropology to interpret extreme self-sacrifice through the concept of identity fusion. The model neglects the role of normative systems in shaping behaviors, especially in relation to violent extremism. In peaceful groups, increasing fusion will actually decrease extremism. Groups collectively appraise threats and opportunities, actively debate action options, and rarely choose violence toward self or others.


2018 ◽  
Vol 41 ◽  
Author(s):  
Kevin Arceneaux

AbstractIntuitions guide decision-making, and looking to the evolutionary history of humans illuminates why some behavioral responses are more intuitive than others. Yet a place remains for cognitive processes to second-guess intuitive responses – that is, to be reflective – and individual differences abound in automatic, intuitive processing as well.


Sign in / Sign up

Export Citation Format

Share Document