Cell wall integrity signalling in human pathogenic fungi

2016 ◽  
Vol 18 (9) ◽  
pp. 1228-1238 ◽  
Author(s):  
Karl Dichtl ◽  
Sweta Samantaray ◽  
Johannes Wagener
2018 ◽  
Vol 16 (1) ◽  
pp. 44-53
Author(s):  
Marina Campos Rocha ◽  
Camilla Alves Santos ◽  
Iran Malavazi

Different signaling cascades including the Cell Wall Integrity (CWI), the High Osmolarity Glycerol (HOG) and the Ca2+/calcineurin pathways control the cell wall biosynthesis and remodeling in fungi. Pathogenic fungi, such as Aspergillus fumigatus and Candida albicans, greatly rely on these signaling circuits to cope with different sources of stress, including the cell wall stress evoked by antifungal drugs and the host’s response during infection. Hsp90 has been proposed as an important regulatory protein and an attractive target for antifungal therapy since it stabilizes major effector proteins that act in the CWI, HOG and Ca2+/calcineurin pathways. Data from the human pathogen C. albicans have provided solid evidence that loss-of-function of Hsp90 impairs the evolution of resistance to azoles and echinocandin drugs. In A. fumigatus, Hsp90 is also required for cell wall integrity maintenance, reinforcing a coordinated function of the CWI pathway and this essential molecular chaperone. In this review, we focus on the current information about how Hsp90 impacts the aforementioned signaling pathways and consequently the homeostasis and maintenance of the cell wall, highlighting this cellular event as a key mechanism underlying antifungal therapy based on Hsp90 inhibition.


2013 ◽  
Vol 58 (1) ◽  
pp. 167-175 ◽  
Author(s):  
Awanish Kumar ◽  
Sanjiveeni Dhamgaye ◽  
Indresh Kumar Maurya ◽  
Ashutosh Singh ◽  
Monika Sharma ◽  
...  

ABSTRACTCurcumin (CUR) shows antifungal activity against a range of pathogenic fungi, includingCandida albicans. The reported mechanisms of action of CUR include reactive oxygen species (ROS) generation, defects in the ergosterol biosynthesis pathway, decrease in hyphal development, and modulation of multidrug efflux pumps. Reportedly, each of these pathways is independently linked to the cell wall machinery inC. albicans, but surprisingly, CUR has not been previously implicated in cell wall damage. In the present study, we performed transcriptional profiling to identify the yet-unidentified targets of CUR inC. albicans. We found that, among 348 CUR-affected genes, 51 were upregulated and 297 were downregulated. Interestingly, most of the cell wall integrity pathway genes were downregulated. The possibility of the cell wall playing a critical role in the mechanism of CUR required further validation; therefore, we performed specific experiments to establish if there was any link between the two. The fractional inhibitory concentration index values of 0.24 to 0.37 show that CUR interacts synergistically with cell wall-perturbing (CWP) agents (caspofungin, calcofluor white, Congo red, and SDS). Furthermore, we could observe cell wall damage and membrane permeabilization by CUR alone, as well as synergistically with CWP agents. We also found hypersusceptibility in calcineurin and mitogen-activated protein (MAP) kinase pathway mutants against CUR, which confirmed that CUR also targets cell wall biosynthesis inC. albicans. Together, these data provide strong evidence that CUR disrupts cell wall integrity inC. albicans. This new information on the mechanistic action of CUR could be employed in improving treatment strategies and in combinatorial drug therapy.


2022 ◽  
Author(s):  
Yu Zhang ◽  
Mengyan Li ◽  
Hanying Wang ◽  
Juqing Deng ◽  
Jianxing Liu ◽  
...  

Abstract The mechanism of fungal cell wall synthesis and assembly is still unclear. Saccharomyces cerevisiae (S. cerevisiae) and pathogenic fungi are conserved in cell wall construction and response to stress signals, and often respond to cell wall stress through activated cell wall integrity (CWI) pathways. Whether the YLR358C open reading frame regulates CWI remains unclear. This study found that the growth of S. cerevisiae with YLR358C knockout was significantly inhibited on the medium containing different concentrations of cell wall interfering agents Calcofluor White (CFW), Congo Red (CR) and sodium dodecyl sulfate (SDS). CFW staining showed that the cell wall chitin was down-regulated, and transmission electron microscopy also observed a decrease in cell wall thickness. Transcriptome sequencing and analysis showed that YLR358C gene may be involved in the regulation of CWI signaling pathway. It was found by qRT-PCR that WSC3, SWI4 and HSP12 were differentially expressed after YLR358C was knocked out. The above results suggest that YLR358C may regulate the integrity of the yeast cell walls and has some potential for application in fermentation.


2020 ◽  
Vol 21 (3) ◽  
pp. 265-283 ◽  
Author(s):  
João Henrique T.M. Fabri ◽  
Marina C. Rocha ◽  
Iran Malavazi

:The cell wall (CW) and plasma membrane are fundamental structures that define cell shape and support different cellular functions. In pathogenic fungi, such as Aspegillus fumigatus, they not only play structural roles but are also important for virulence and immune recognition. Both the CW and the plasma membrane remain as attractive drug targets to treat fungal infections, such as the Invasive Pulmonary Aspergillosis (IPA), a disease associated with high morbimortality in immunocompromised individuals. The low efficiency of echinocandins that target the fungal CW biosynthesis, the occurrence of environmental isolates resistant to azoles such as voriconazole and the known drawbacks associated with amphotericin toxicity foster the urgent need for fungal-specific drugable targets and/or more efficient combinatorial therapeutic strategies. Reverse genetic approaches in fungi unveil that perturbations of the CW also render cells with increased susceptibility to membrane disrupting agents and vice-versa. However, how the fungal cells simultaneously cope with perturbation in CW polysaccharides and cell membrane proteins to allow morphogenesis is scarcely known. Here, we focus on current information on how the main signaling pathways that maintain fungal cell wall integrity, such as the Cell Wall Integrity and the High Osmolarity Glycerol pathways, in different species often cross-talk to regulate the synthesis of molecules that comprise the plasma membrane, especially sphingolipids, ergosterol and phospholipids to promote functioning of both structures concomitantly and thus, cell viability. We propose that the conclusions drawn from other organisms are the foundations to point out experimental lines that can be endeavored in A. fumigatus.


2019 ◽  
Author(s):  
Khadija Ahmed ◽  
David E. Carter ◽  
Patrick Lajoie

ABSTRACTThe disruption of protein folding homeostasis in the endoplasmic reticulum (ER) results in an accumulation of toxic misfolded proteins and activates a network of signaling events collectively known as the unfolded protein response (UPR). While UPR activation upon ER stress is well characterized, how other signaling pathways integrate into the ER proteostasis network is unclear. Here, we sought to investigate how the target of rapamycin complex 1 (TORC1) signaling cascade acts in parallel with the UPR to regulate ER stress sensitivity. Using S. cerevisiae, we found that TORC1 signaling is attenuated during ER stress and constitutive activation of TORC1 increases sensitivity to ER stressors such as tunicamycin and inositol deprivation. This phenotype is independent of the UPR. Transcriptome analysis revealed that TORC1 hyperactivation results in cell wall remodelling. Conversely, hyperactive TORC1 sensitizes cells to cell wall stressors, including the antifungal caspofungin. Elucidating the crosstalk between the UPR, cell wall integrity, and TORC1 signaling may uncover new paradigms through which the response to protein misfolding is regulated, and thus have crucial implications for the development of novel therapeutics against pathogenic fungal infections.IMPORTANCEThe prevalence of pathogenic fungal infections, coupled with the emergence of new fungal pathogens, has brought these diseases to the forefront of global health problems. While antifungal treatments have advanced over the last decade, patient outcomes have not substantially improved. These shortcomings are largely attributed to the evolutionary similarity between fungi and humans, which limits the scope of drug development. As such, there is a pressing need to understand the unique cellular mechanisms that govern fungal viability. Given that Saccharomyces cerevisiae is evolutionarily related to a number of pathogenic fungi, and in particular to the Candida species, most genes from S. cerevisiae are highly conserved in pathogenic fungal strains. Here we show that hyperactivation of TORC1 signaling sensitizes S. cerevisiae cells to both endoplasmic reticulum stress and cell wall stressors by compromising cell wall integrity. Therefore, targeting TORC1 signaling and endoplasmic reticulum stress pathways may be useful in developing novel targets for antifungal drugs.


2021 ◽  
Vol 7 (10) ◽  
pp. 831
Author(s):  
Haroldo Cesar de Oliveira ◽  
Suelen Andreia Rossi ◽  
Irene García-Barbazán ◽  
Óscar Zaragoza ◽  
Nuria Trevijano-Contador

Due to its location, the fungal cell wall is the compartment that allows the interaction with the environment and/or the host, playing an important role during infection as well as in different biological functions such as cell morphology, cell permeability and protection against stress. All these processes involve the activation of signaling pathways within the cell. The cell wall integrity (CWI) pathway is the main route responsible for maintaining the functionality and proper structure of the cell wall. This pathway is highly conserved in the fungal kingdom and has been extensively characterized in Saccharomyces cerevisiae. However, there are still many unknown aspects of this pathway in the pathogenic fungi, such as Cryptococcus neoformans. This yeast is of particular interest because it is found in the environment, but can also behave as pathogen in multiple organisms, including vertebrates and invertebrates, so it has to adapt to multiple factors to survive in multiple niches. In this review, we summarize the components of the CWI pathway in C. neoformans as well as its involvement in different aspects such as virulence factors, morphological changes, and its role as target for antifungal therapies among others.


Genetics ◽  
2003 ◽  
Vol 165 (2) ◽  
pp. 517-529
Author(s):  
Kentaro Ohkuni ◽  
Asuko Okuda ◽  
Akihiko Kikuchi

AbstractNbp2p is a Nap1-binding protein in Saccharomyces cerevisiae identified by its interaction with Nap1 by a two-hybrid system. NBP2 encodes a novel protein consisting of 236 amino acids with a Src homology 3 (SH3) domain. We showed that NBP2 functions to promote mitotic cell growth at high temperatures and cell wall integrity. Loss of Nbp2 results in cell death at high temperatures and in sensitivity to calcofluor white. Cell death at high temperature is thought not to be due to a weakened cell wall. Additionally, we have isolated several type-2C serine threonine protein phosphatases (PTCs) as multicopy suppressors and MAP kinase-kinase (MAPKK), related to the yeast PKC MAPK pathway, as deletion suppressors of the nbp2Δ mutant. Screening for deletion suppressors is a new genetic approach to identify and characterize additional proteins in the Nbp2-dependent pathway. Genetic analyses suggested that Ptc1, which interacts with Nbp2 by the two-hybrid system, acts downstream of Nbp2 and that cells lacking the function of Nbp2 prefer to lose Mkk1, but the PKC MAPK pathway itself is indispensable when Nbp2 is deleted at high temperature.


Sign in / Sign up

Export Citation Format

Share Document