scholarly journals Specialisation and diversity of multiple trophic groups are promoted by different forest features

2018 ◽  
Vol 22 (1) ◽  
pp. 170-180 ◽  
Author(s):  
Caterina Penone ◽  
Eric Allan ◽  
Santiago Soliveres ◽  
María R Felipe‐Lucia ◽  
Martin M Gossner ◽  
...  
Keyword(s):  
Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 338
Author(s):  
Claire Michelet ◽  
Daniela Zeppilli ◽  
Cédric Hubas ◽  
Elisa Baldrighi ◽  
Philippe Cuny ◽  
...  

Bioindicators assess the mangroves ecological state according to the types of pressures but they differ with the ecosystem’s specificities. We investigated benthic meiofauna diversity and structure within the low human-impacted mangroves in French Guiana (South America) in response to sediment variables with various distances to the main city. Contaminant’s concentrations differed among the stations, but they remained below toxicity guidelines. Meiofauna structure (Foraminifera, Kinorhyncha, Nematoda) however varied accordingly. Nematode’s identification brought details on the sediment’s quality. The opportunistic genus Paraethmolaimus (Jensen, 1994) strongly correlated to the higher concentrations of Hg, Pb. Anoxic sediments were marked by organic enrichment in pesticides, PCB, and mangrove litter products and dominance of two tolerant genus, Terschellingia (de Man, 1888) and Spirinia (Gerlach, 1963). In each of these two stations, we found many Desmodora individuals (de Man, 1889) with the presence of epibionts highlighting the nematodes decreased fitness and defenses. Oxic sediments without contaminants were distinguished by the sensitive genera Pseudocella (Filipjev, 1927) and a higher diversity of trophic groups. Our results suggested a nematodes sensitivity to low contaminants concentrations. Further investigations at different spatio-temporal scales and levels of deterioration, would be necessary to use of this group as bioindicator of the mangroves’ ecological status.


Helia ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Natalia Kostyuchenko ◽  
Viktor Lyakh ◽  
Anatoliy Soroka

Abstract The effects of various concentrations of herbicide Euro-Lightning Plus on the state of microbiota in the root zone of sunflower have been studied. Soil of plant rhizosphere and interrow soil after treatment with the herbicide at the doses of 1.2 and 2.5 l/ha were taken for the analysis at the end of sunflower growing season. Rhizosphere soil without herbicide application was used as a control. The herbicide was applied at the stage of 2–4 true leaves. The total number of bacteria in the rhizosphere of control plants was 12.82 million CFU/g of soil while in the rhizosphere and in the interrow soil after herbicide treatment with a dose of 2.5 l/ha it decreased by 1.4–1.5 times. A general trend of decline in number of the basic ecological and trophic groups of bacterial microorganisms with the increase in a dose of herbicide was established. Microbiological coefficients that reflect the functional activity of the microflora indicate changes in its biological activity under the influence of the herbicide Euro-Lightning Plus, which leads to deterioration in the agroecological state of the studied soils. It was also found that herbicide application resulted in a rearrangement of micromycete complexes in the root zone of sunflower which led to a two-fold reduction, compared to the control, of mycobiota species diversity and the formation of a specific species composition of mycocenoses. A greater genus and species diversity of fungi of the microflora in the rhizosphere of control plants, in comparison with the herbicide-treated soil, was revealed. A reduction in species diversity of the genus Penicillium from six species in the control to 1–2 species in the rhizosphere of experimental sunflower plants as well as the absence of rare saprophytic fungi species from the genera Acremonium, Verticillium, Trichoderma and Paecilomyces were noted.


Biologia ◽  
2009 ◽  
Vol 64 (5) ◽  
Author(s):  
Ján Krištofík ◽  
Peter Mašán ◽  
Zbyšek Šustek ◽  
Dušan Karaska

AbstractIn 2001–2007, altogether 57 nests of lesser spotted eagle were collected in the Orava region in northwestern Slovakia and four groups of arthropods were extracted from them. Richest in number of species and individuals were mites (23 species, 17,500 ind.), followed by beetles (12 species, 725 ind.), whereas pseudoscorpions were represented only by Pselaphochernes scorpioides (39 ind.) and fleas by Ceratophyllus garei (3 ind.). Unlike nests of other birds, free-living mites predominated in the nests fauna (83% of individuals), followed by nidicolous species with more or less free relationship to the nests, while parasitic species represented only a negligible part of the fauna. For the first time we observed phoresy of Nenteria pandioni, a specific and abundant mite in the eagles’ nests, on the nidicolous staphylinid Haploglossa puncticollis. The beetle fauna in the nests was much poorer than in nests of other birds. The predatory H. puncticollis was dominant in the nests (83%) and occurred continuously during the whole investigation period. Other beetles, even the widely distributed nidicols such as the histerid Gnathoncus buyssoni, were found rarely in nests. Predators were also the only abundant trophic group of beetles in the nests, while other trophic groups of beetles abundantly co-occur in nests of majority of other birds. The occurrence of all beetles was very unevenly distributed during the investigation period, but was positively correlated with occurrence of mites. The relatively low number of species and individuals of mites and beetles in the lesser spotted eagle nests resulted from their position on tree tops, at a height of 20–30 m and their quick drying out by sun and wind. It was also indicated by an enormously low number of species and individuals of mycetophagous beetles, which represent a significant component of the fauna in nests of other birds.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gaëtane Le Provost ◽  
Jan Thiele ◽  
Catrin Westphal ◽  
Caterina Penone ◽  
Eric Allan ◽  
...  

AbstractLand-use intensification is a major driver of biodiversity loss. However, understanding how different components of land use drive biodiversity loss requires the investigation of multiple trophic levels across spatial scales. Using data from 150 agricultural grasslands in central Europe, we assess the influence of multiple components of local- and landscape-level land use on more than 4,000 above- and belowground taxa, spanning 20 trophic groups. Plot-level land-use intensity is strongly and negatively associated with aboveground trophic groups, but positively or not associated with belowground trophic groups. Meanwhile, both above- and belowground trophic groups respond to landscape-level land use, but to different drivers: aboveground diversity of grasslands is promoted by diverse surrounding land-cover, while belowground diversity is positively related to a high permanent forest cover in the surrounding landscape. These results highlight a role of landscape-level land use in shaping belowground communities, and suggest that revised agroecosystem management strategies are needed to conserve whole-ecosystem biodiversity.


2014 ◽  
Vol 86 (3) ◽  
pp. 1207-1220 ◽  
Author(s):  
GUILHERME S. TOLEDO-LIMA ◽  
PHOEVE MACARIO ◽  
RACHEL M. DE LYRA-NEVES ◽  
BRUNO P. TEIXEIRA ◽  
LUIZ A.F. DE LIMA ◽  
...  

In northeastern Brazil, the reduction of the natural forest cover to a series of small, isolated fragments has had negative consequences for the local avian fauna, in particular, a loss of the more specialized species, while the populations of some generalists have tended to increase. The present study focuses on the composition and trophic groups of a bird community on a farm in the northeastern Brazilian state of Alagoas. Monthly surveys were conducted between November 2008 and October 2009, based on mist-netting and systematic observations. Overall, 112 species were recorded, of which 76 were associated with the two forest fragments surveyed, while all the others were observed exclusively in the surrounding matrix of pasture and orchards. The bird community presented a predominance of insectivorous species, followed by omnivores. However, specialized trunk-creeping and understory insectivores accounted for only around 15% of the species in this feeding category. The reduced diversity of other guilds and species with more specialized diets, and the complete absence of sensitive species such as large parrots and raptors, reflects the severe fragmentation and degradation of the local forests, which has greatly reduced the availability of dietary resources and breeding sites.


2018 ◽  
Vol 23 (1) ◽  
pp. 1 ◽  
Author(s):  
Colin K. C. Wen ◽  
Li-Shu Chen ◽  
Kwang-Tsao Shao

Spatial and temporal variations in the species composition of assemblages are common in many marine organisms, including fishes. Variations in the fish species composition of subtidal coral reefs have been well documented, however much less is known about such differences for intertidal fish assemblages. This is surprising, given that intertidal fishes are more vulnerable to terrestrial human disturbances. It is critical to evaluate the ecology and biology of intertidal fishes before they are severely impacted by coastal development, especially in developing countries such as those in the tropical western Pacific region where coastal development is rapidly increasing. In this study, we investigated the species composition, abundance, biomass and species number (richness) for intertidal fish assemblages in subtropical (northern) and tropical (southern) Taiwan across four seasons by collecting fishes from tidepools using clove oil. We also examined the gut contents of collected fishes to identify their trophic functional groups in order to investigate regional and seasonal variations for different trophic groups. We found significant differences in the species composition of tidepool fish assemblages between subtropical and tropical Taiwan. Bathygobius fuscus, Abudefduf vaigiensis and Istiblennius dussumieri were dominant species in subtropical Taiwan, whereas Bathygobius coalitus, Abudefduf septemfasciatus and Istiblennius lineatus were dominant in tropical Taiwan. Other species such as Bathygobius cocosensis, Abudefduf sordidus and Istiblennius edentulus were common in both regions. For trophic groups, omnivores and detritivores had or showed trends towards higher species numbers and abundances in the subtropical region, whereas herbivores, planktivores and general carnivores had or showed trends towards higher species numbers and biomass in the tropical region. Overall, many intertidal fish species and trophic groups showed differences in abundance, biomass and species number between subtropical and tropical Taiwan. Further studies on large scale geographical gradients in trophic groups and species compositions in the Indo-west Pacific region are encouraged to assist with ecosystem monitoring and assessment. Keywords: Intertidal fishes, spatio-temporal pattern, feeding guild, diet


2016 ◽  
Vol Volume 112 (Number 9/10) ◽  
Author(s):  
Monique Botha ◽  
Stefan J. Siebert ◽  
Johnnie van den Berg ◽  
◽  
◽  
...  

Abstract The long-standing tradition of classifying South Africa’s biogeographical area into biomes is commonly linked to vegetation structure and climate. Because arthropod communities are often governed by both these factors, it can be expected that arthropod communities would fit the biomes. To test this hypothesis, we considered how well arthropod species assemblages fit South Africa’s grassy biomes. Arthropod assemblages were sampled from six localities across the grassland and savanna biomes by means of suction sampling, to determine whether the two biomes have distinctive arthropod assemblages. Arthropod samples of these biomes clustered separately in multidimensional scaling analyses. Within biomes, arthropod assemblages were more distinctive for savanna localities than grassland. Arthropod samples of the two biomes clustered together when trophic groups were considered separately, suggesting some similarity in functional assemblages. Dissimilarity was greatest between biomes for phytophagous and predacious trophic groups, with most pronounced differentiation between biomes at sub-escarpment localities. Our results indicate that different arthropod assemblages do fit the grassy biomes to some extent, but the pattern is not as clear as it is for plant species.


2019 ◽  
Vol 130 ◽  
pp. 1-7 ◽  
Author(s):  
Mette Vestergård ◽  
Marie Dam ◽  
Louise Hindborg Mortensen ◽  
Jens Dyckmans ◽  
Bent T. Christensen

Sign in / Sign up

Export Citation Format

Share Document