scholarly journals Eight generations of native seed cultivation reduces plant fitness relative to the wild progenitor population

2021 ◽  
Author(s):  
Riley Pizza ◽  
Erin Espeland ◽  
Julie Etterson
Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 469 ◽  
Author(s):  
Vila-Aiub

Herbicide resistance is the ultimate evidence of the extraordinary capacity of weeds to evolve under stressful conditions. Despite the extraordinary plant fitness advantage endowed by herbicide resistance mutations in agroecosystems under herbicide selection, resistance mutations are predicted to exhibit an adaptation cost (i.e., fitness cost), relative to the susceptible wild-type, in herbicide untreated conditions. Fitness costs associated with herbicide resistance mutations are not universal and their expression depends on the particular mutation, genetic background, dominance of the fitness cost, and environmental conditions. The detrimental effects of herbicide resistance mutations on plant fitness may arise as a direct impact on fitness-related traits and/or coevolution with changes in other life history traits that ultimately may lead to fitness costs under particular ecological conditions. This brings the idea that a “lower adaptive value” of herbicide resistance mutations represents an opportunity for the design of resistance management practices that could minimize the evolution of herbicide resistance. It is evident that the challenge for weed management practices aiming to control, minimize, or even reverse the frequency of resistance mutations in the agricultural landscape is to “create” those agroecological conditions that could expose, exploit, and exacerbate those life history and/or fitness traits affecting the evolution of herbicide resistance mutations. Ideally, resistance management should implement a wide range of cultural practices leading to environmentally mediated fitness costs associated with herbicide resistance mutations.


2020 ◽  
Author(s):  
Trace E. Martyn ◽  
Daniel B. Stouffer ◽  
Oscar Godoy ◽  
Ignasi Bartomeus ◽  
Abigail Pastore ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 4602
Author(s):  
Lenka Zablatzká ◽  
Jana Balarynová ◽  
Barbora Klčová ◽  
Pavel Kopecký ◽  
Petr Smýkal

In angiosperms, the mature seed consists of embryo, endosperm, and a maternal plant-derived seed coat (SC). The SC plays a role in seed filling, protects the embryo, mediates dormancy and germination, and facilitates the dispersal of seeds. SC properties have been modified during the domestication process, resulting in the removal of dormancy, mediated by SC impermeability. This study compares the SC anatomy and histochemistry of two wild (JI64 and JI1794) and two domesticated (cv. Cameor and JI92) pea genotypes. Histochemical staining of five developmental stages: 13, 21, 27, 30 days after anthesis (DAA), and mature dry seeds revealed clear differences between both pea types. SC thickness is established early in the development (13 DAA) and is primarily governed by macrosclereid cells. Polyanionic staining by Ruthenium Red indicated non homogeneity of the SC, with a strong signal in the hilum, the micropyle, and the upper parts of the macrosclereids. High peroxidase activity was detected in both wild and cultivated genotypes and increased over the development peaking prior to desiccation. The detailed knowledge of SC anatomy is important for any molecular or biochemical studies, including gene expression and proteomic analysis, especially when comparing different genotypes and treatments. Analysis is useful for other crop-to-wild-progenitor comparisons of economically important legume crops.


2021 ◽  
Vol 22 (13) ◽  
pp. 6647
Author(s):  
Radka Podlipná ◽  
Martina Navrátilová ◽  
Lucie Raisová Stuchlíková ◽  
Kateřina Moťková ◽  
Lenka Langhansová ◽  
...  

Although manure is an important source of minerals and organic compounds it represents a certain risk of spreading the veterinary drugs in the farmland and their permeation to human food. We tested the uptake of the anthelmintic drug fenbendazole (FBZ) by soybean, a common crop plant, from the soil and its biotransformation and accumulation in different soybean organs, including beans. Soybeans were cultivated in vitro or grown in a greenhouse in pots. FBZ was extensively metabolized in roots of in vitro seedlings, where sixteen metabolites were identified, and less in leaves, where only two metabolites were found. The soybeans in greenhouse absorbed FBZ by roots and translocated it to the leaves, pods, and beans. In roots, leaves, and pods two metabolites were identified. In beans, FBZ and one metabolite was found. FBZ exposure did not affect the plant fitness or yield, but reduced activities of some antioxidant enzymes and isoflavonoids content in the beans. In conclusion, manure or biosolids containing FBZ and its metabolites represent a significant risk of these pharmaceuticals entering food consumed by humans or animal feed. In addition, the presence of these drugs in plants can affect plant metabolism, including the production of isoflavonoids.


Oecologia ◽  
2021 ◽  
Author(s):  
Andrés M. Devegili ◽  
María N. Lescano ◽  
Ernesto Gianoli ◽  
Alejandro G. Farji-Brener

Author(s):  
Jin Yue Liu ◽  
Ze Wen Sheng ◽  
Yu Qi Hu ◽  
Qi Liu ◽  
Sheng Qiang ◽  
...  

AbstractThe releasing of transgenic soybeans (Glycine max (L.) Merr.) into farming systems raises concerns that transgenes might escape from the soybeans via pollen into their endemic wild relatives, the wild soybean (Glycine soja Sieb. et Zucc.). The fitness of F1 hybrids obtained from 10 wild soybean populations collected from China and transgenic glyphosate-resistant soybean was measured without weed competition, as well as one JLBC-1 F1 hybrid under weed competition. All crossed seeds emerged at a lower rate from 13.33–63.33%. Compared with those of their wild progenitors, most F1 hybrids were shorter, smaller, and with decreased aboveground dry biomass, pod number, and 100-seed weight. All F1 hybrids had lower pollen viability and filled seeds per plant. Finally, the composite fitness of nine F1 hybrids was significantly lower. One exceptional F1 hybrid was IMBT F1, in which the composite fitness was 1.28, which was similar to that of its wild progenitor due to the similarities in pod number, increased aboveground dry biomass, and 100-seed weight. Under weed competition, plant height, aboveground dry biomass, pod number per plant, filled seed number per plant, and 100-seed weight of JLBC-1 F1 were lower than those of the wild progenitor JLBC-1. JLBC-1 F1 hybrids produced 60 filled seeds per plant. Therefore, F1 hybrids could emerge and produce offspring. Thus, effective measures should be taken to prevent gene flow from transgenic soybean to wild soybean to avoid the production F1 hybrids when releasing transgenic soybean in fields in the future.


Sign in / Sign up

Export Citation Format

Share Document