scholarly journals RAPID EVOLUTION OF REPRODUCTIVE ISOLATION BETWEEN INCIPIENT OUTCROSSING AND SELFINGCLARKIASPECIES

Evolution ◽  
2014 ◽  
Vol 68 (10) ◽  
pp. 2885-2900 ◽  
Author(s):  
Ryan D. Briscoe Runquist ◽  
Eric Chu ◽  
Justin L. Iverson ◽  
Jason C. Kopp ◽  
David A. Moeller
2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Patrick M. Ferree ◽  
Satyaki Prasad

Satellites are one of the most enigmatic parts of the eukaryotic genome. These highly repetitive, noncoding sequences make up as much as half or more of the genomic content and are known to play essential roles in chromosome segregation during meiosis and mitosis, yet they evolve rapidly between closely related species. Research over the last several decades has revealed that satellite divergence can serve as a formidable reproductive barrier between sibling species. Here we highlight several key studies on Drosophila and other model organisms demonstrating deleterious effects of satellites and their rapid evolution on the structure and function of chromosomes in interspecies hybrids. These studies demonstrate that satellites can impact chromosomes at a number of different developmental stages and through distinct cellular mechanisms, including heterochromatin formation. These findings have important implications for how loci that cause postzygotic reproductive isolation are viewed.


2019 ◽  
Vol 36 (8) ◽  
pp. 1686-1700 ◽  
Author(s):  
Covadonga Vara ◽  
Laia Capilla ◽  
Luca Ferretti ◽  
Alice Ledda ◽  
Rosa A Sánchez-Guillén ◽  
...  

Abstract One of the major challenges in evolutionary biology is the identification of the genetic basis of postzygotic reproductive isolation. Given its pivotal role in this process, here we explore the drivers that may account for the evolutionary dynamics of the PRDM9 gene between continental and island systems of chromosomal variation in house mice. Using a data set of nearly 400 wild-caught mice of Robertsonian systems, we identify the extent of PRDM9 diversity in natural house mouse populations, determine the phylogeography of PRDM9 at a local and global scale based on a new measure of pairwise genetic divergence, and analyze selective constraints. We find 57 newly described PRDM9 variants, this diversity being especially high on Madeira Island, a result that is contrary to the expectations of reduced variation for island populations. Our analysis suggest that the PRDM9 allelic variability observed in Madeira mice might be influenced by the presence of distinct chromosomal fusions resulting from a complex pattern of introgression or multiple colonization events onto the island. Importantly, we detect a significant reduction in the proportion of PRDM9 heterozygotes in Robertsonian mice, which showed a high degree of similarity in the amino acids responsible for protein–DNA binding. Our results suggest that despite the rapid evolution of PRDM9 and the variability detected in natural populations, functional constraints could facilitate the accumulation of allelic combinations that maintain recombination hotspot symmetry. We anticipate that our study will provide the basis for examining the role of different PRDM9 genetic backgrounds in reproductive isolation in natural populations.


2019 ◽  
Author(s):  
P. Brand ◽  
I. A. Hinojosa-Díaz ◽  
R. Ayala ◽  
M. Daigle ◽  
C. L. Yurrita Obiols ◽  
...  

Speciation is facilitated by the evolution of reproductive barriers that prevent or reduce hybridization among diverging lineages. However, the genetic mechanisms that control the evolution of reproductive barriers remain elusive, particularly in natural populations. We identify a gene associated with divergence in chemical courtship signaling in a pair of nascent orchid bee lineages. Male orchid bees collect perfume compounds from flowers and other sources to subsequently expose during courtship display, thereby conveying information on species identity. We show that these two lineages exhibit differentiated perfume blends and that this change is associated with the rapid evolution of a single odorant receptor gene. Our study suggests that reproductive isolation evolved through divergence of a major barrier gene involved in chemically mediated pre-mating isolation via genetic coupling.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Yasir H. Ahmed-Braimah ◽  
Bryant F. McAllister

The virilis group of Drosophila represents a relatively unexplored but potentially useful model to investigate the genetics of speciation. Good resolution of phylogenetic relationships and the ability to obtain fertile hybrid offspring make the group especially promising for analysis of genetic changes underlying reproductive isolation separate from hybrid sterility and inviability. Phylogenetic analyses reveal a close relationship between the sister species, Drosophila americana and D. novamexicana, yet excepting their contemporary allopatric distributions, factors that contribute to reproductive isolation between this species pair remain uncharacterized. A previous report has shown reduced progeny numbers in laboratory crosses between the two species, especially when female D. novamexicana are crossed with male D. americana. We show that the hatch rate of eggs produced from heterospecific matings is reduced relative to conspecific matings. Failure of eggs to hatch, and consequent reduction in hybrid progeny number, is caused by low fertilization success of heterospecific sperm, thus representing a postmating, prezygotic incompatibility. Following insemination, storage and motility of heterospecific sperm is visibly compromised in female D. novamexicana. Our results provide evidence for a mechanism of reproductive isolation that is seldom reported for Drosophila species, and indicate the rapid evolution of postmating, prezygotic reproductive barriers in allopatry.


Evolution ◽  
2005 ◽  
Vol 59 (4) ◽  
pp. 849 ◽  
Author(s):  
Sarah J. Christianson ◽  
John G. Swallow ◽  
Gerald S. Wilkinson

2018 ◽  
Author(s):  
Jenn M. Coughlan ◽  
Maya Wilson Brown ◽  
John H. Willis

SummaryGenomic conflicts may play a central role in the evolution of reproductive barriers. Theory predicts that early-onset hybrid inviability may stem from conflict between parents for resource allocation to offspring. Here we describe M. decorus; a group of cryptic species within the M. guttatus species complex that are largely reproductively isolated by hybrid seed inviability (HSI). HSI between M. guttatus and M. decorus is common and strong, but populations of M. decorus vary in the magnitude and directionality of HSI with M. guttatus. Patterns of HSI between M. guttatus and M. decorus, as well as within M. decorus conform to the predictions of parental conflict: (1) reciprocal F1s exhibit size differences and parent-of-origin specific endosperm defects, (2) the extent of asymmetry between reciprocal F1 seed size is correlated with asymmetry in HSI, and (3) inferred differences in the extent of conflict predict the extent of HSI between populations. We also find that HSI is rapidly evolving, as populations that exhibit the most HSI are each others’ closest relative. Lastly, while all populations are largely outcrossing, we find that the differences in the inferred strength of conflict scale positively with π, suggesting that demographic or life history factors other than mating system may also influence the rate of parental conflict driven evolution. Overall, these patterns suggest the rapid evolution of parent-of-origin specific resource allocation alleles coincident with HSI within and between M. guttatus and M. decorus. Parental conflict may therefore be an important evolutionary driver of reproductive isolation.


2020 ◽  
Vol 375 (1806) ◽  
pp. 20190533 ◽  
Author(s):  
Jenn M. Coughlan ◽  
Daniel R. Matute

Intrinsic postzygotic barriers can play an important and multifaceted role in speciation, but their contribution is often thought to be reserved to the final stages of the speciation process. Here, we review how intrinsic postzygotic barriers can contribute to speciation, and how this role may change through time. We outline three major contributions of intrinsic postzygotic barriers to speciation. (i) reduction of gene flow : intrinsic postzygotic barriers can effectively reduce gene exchange between sympatric species pairs. We discuss the factors that influence how effective incompatibilities are in limiting gene flow. (ii) early onset of species boundaries via rapid evolution : intrinsic postzygotic barriers can evolve between recently diverged populations or incipient species, thereby influencing speciation relatively early in the process. We discuss why the early origination of incompatibilities is expected under some biological models, and detail how other (and often less obvious) incompatibilities may also serve as important barriers early on in speciation. (iii) reinforcement : intrinsic postzygotic barriers can promote the evolution of subsequent reproductive isolation through processes such as reinforcement, even between relatively recently diverged species pairs. We incorporate classic and recent empirical and theoretical work to explore these three facets of intrinsic postzygotic barriers, and provide our thoughts on recent challenges and areas in the field in which progress can be made. This article is part of the theme issue ‘Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers’.


2012 ◽  
Vol 58 (1) ◽  
pp. 21-34 ◽  
Author(s):  
Megan V. Mcphee ◽  
David L. G. Noakes ◽  
Fred W. Allendorf

Abstract Morphologically divergent ecotypes arise in fish populations on postglacial time scales, and resource polymorphisms are often invoked to explain their origin. However, genetic recombination can constrain the ability of divergent selection to produce reproductive isolation in sympatry. Recombination breaks up favorable combinations of traits (“adaptive suites”) if individual traits are affected by different loci. Recombination also breaks up any association between traits under divergent selection and traits contributing to reproductive isolation. Thus, ecological speciation in the absence of preexisting barriers to gene flow is more likely when pleiotropy minimizes the number of loci involved. Here, we revisit research conducted by Carl Hubbs in the early 1900s on the effects of developmental rate on morphological traits in fishes. Hubbs’ work provides a mechanism to explain how sympatric divergence by trophic polymorphism can occur despite the challenges of recombination. We consider the implications of Hubbs’ observations for ecological speciation with gene flow in fishes, as well as rapid evolution in captive fish populations.


2021 ◽  
Author(s):  
Ryan S Greenway ◽  
Anthony P Brown ◽  
Henry Camarillo ◽  
Cassandra Delich ◽  
Kerry L McGowan ◽  
...  

Divergent selection along ecological gradients can lead to speciation, and replicated speciation events occur when populations of multiple lineages undergo divergence following colonization of similar environments. In such instances, it remains unclear to what extent reproductive isolation evolves via convergent mechanisms at the genomic level due to biases in the types of systems typically used to study convergent evolution. We used a unique system in which three species of poeciliid fishes occur in sympatry in an extremely toxic, hydrogen sulfide (H2S)-rich spring and an adjacent nonsulfidic stream to examine shared patterns of adaptive divergence across multiple levels of biological organization. Despite extremely small spatial scales, we found strong genetic differentiation between populations in sulfidic and nonsulfidic habitats mediated by strong selection against migrants between habitat types. High levels of reproductive isolation were accompanied by convergent patterns of adaptation in morphological and physiological traits, as well as genome-wide patterns of gene expression across all three species. Furthermore, the mitochondrial genomes of each species exhibit shared signatures of selection on key genes involved in H2S toxicity. However, contrary to predictions of speciation theory, analyses of divergence across the nuclear genome neither revealed evidence for clear genomic islands of speciation nor substantial congruence of outlier regions across population pairs. Instead, heterogenous regions of divergence spread across the genome suggest that selection for polygenic physiological adaptations likely facilitated the rapid evolution of high levels of reproductive isolation. Overall, we demonstrate that substantial convergence across multiple levels of biological organization can be mediated by non-convergent modifications at the genomic level. By disentangling environmental variation in natural selection from lineage-specific evolution in this system of highly divergent, yet sympatric lineages, our results emphasize the outsized role of the genomic substrate upon which selection acts in driving convergent evolution at the phenotypic level.


2020 ◽  
Author(s):  
Martin D. Garlovsky ◽  
Caroline Evans ◽  
Mathew A. Rosenow ◽  
Timothy L. Karr ◽  
Rhonda R. Snook

ABSTRACTDespite holding a central role for fertilisation success, reproductive traits often show elevated rates of evolution and diversification. The rapid evolution of seminal fluid proteins (Sfps) within populations is predicted to cause mis-signalling between the male ejaculate and female reproductive tract between populations resulting in postmating prezygotic (PMPZ) isolation. Crosses between populations of Drosophila montana show PMPZ isolation in the form of reduced fertilisation success in both noncompetitive and competitive contexts. Here we test whether male ejaculate proteins deriving from either the accessory glands or the ejaculatory bulb differ between populations using liquid chromatography tandem mass spectrometry. We find more than 150 differentially abundant proteins between populations which may contribute to PMPZ isolation. These proteins include a number of proteases and peptidases, and several orthologs of D. melanogaster Sfps, all known to mediate fertilisation success and which mimic PMPZ isolation phenotypes. Males of one population typically produced greater quantities of Sfps and the strongest PMPZ isolation occurs in this direction. The accessory glands and ejaculatory bulb have different functions and the ejaculatory bulb contributes more to population differences than the accessory glands. Proteins with a secretory signal, but not Sfps, evolve faster than non-secretory proteins although the conservative criteria used to define Sfps may have impaired the ability to identify rapidly evolving proteins. We take advantage of quantitative proteomics data from three Drosophila species to determine shared and unique functional enrichments of Sfps that could be subject to selection between taxa and subsequently mediate PMPZ isolation. Our study provides the first high throughput quantitative proteomic evidence showing divergence of reproductive proteins implicated in the emergence of PMPZ isolation between populations.IMPACT SUMMARYIdentifying traits that prevent successful interbreeding is key to understanding early stages of the formation of new species, or speciation. Reproductive isolation arising prior to and during fertilisation frequently involves differences in how the sexes interact. In internally fertilising taxa, such interactions are mediated between the female reproductive tract where fertilisation occurs and the receipt of the ejaculate necessary for fertilisation. Because ejaculate proteins are at least partially responsible for these interactions, differences in male ejaculate protein composition could negatively impact fertilisation success, generating reproductive isolation. While the biological classes of ejaculate proteins are shared across all animal taxa, proteins that are secreted by males tend to show rapid evolution in gene expression and genetic sequence. Thus, reproductive proteins are suggested as prime targets facilitating reproductive isolation that arises after mating but before fertilisation (PostMating PreZygotic or PMPZ isolation). Most research on PMPZ isolation has focussed on differences between species for which it is not possible to determine the causative and temporal order of early speciation processes. Here, we test whether populations that exhibit few genetic differences but show strong PMPZ isolation also exhibit variation in ejaculate composition using quantitative high throughput proteomic analyses. We find a number of proteins are differentially abundant between populations including several known to impact fertilisation success in other species. We show that secreted proteins are evolving at an elevated rate, implicating their potential role in PMPZ isolation. We test divergence in ejaculate composition between species, finding a core set of functions that were conserved across species which last shared a common ancestor more than 40 million years ago along with species-specific investment. This work highlights the divergent evolution of reproductive proteins which may contribute to barriers between populations within a species early during speciation, extendable to similar analyses in other taxa in the future.


Sign in / Sign up

Export Citation Format

Share Document