Resource‐efficient joint fabrication by welding metal 3D‐printed parts to conventional steel: A structural integrity study

Author(s):  
Martina Chierici ◽  
Filippo Berto ◽  
Alper Kanyilmaz
2021 ◽  
pp. 107262
Author(s):  
Mohammad Reza Khosravani ◽  
Payam Soltani ◽  
Kerstin Weinberg ◽  
Tamara Reinicke

2018 ◽  
Vol 8 (10) ◽  
pp. 1879 ◽  
Author(s):  
Luis Santos ◽  
Joel de Jesus ◽  
José Ferreira ◽  
José Costa ◽  
Carlos Capela

Selective Laser Melting (SLM) is currently one of the more advanced manufacturing and prototyping processes, allowing the 3D-printing of complex parts through the layer-by-layer deposition of powder materials melted by laser. This work concerns the study of the fracture toughness of maraging AISI 18Ni300 steel implants by SLM built over two different conventional steels, AISI H13 and AISI 420, ranging the scan rate between 200 mm/s and 400 mm/s. The SLM process creates an interface zone between the conventional steel and the laser melted implant in the final form of compact tension (CT) samples, where the hardness is higher than the 3D-printed material but lower than the conventional steel. Both fully 3D-printed series and 3D-printed implants series produced at 200 mm/s of scan rate showed higher fracture toughness than the other series built at 400 mm/s of scan rate due to a lower level of internal defects. An inexpressive variation of fracture toughness was observed between the implanted series with the same parameters. The crack growth path for all samples occurred in the limit of interface/3D-printed material zone and occurred between laser melted layers.


2021 ◽  
Author(s):  
Aditya Saluja

Fused Filament Fabrication (FFF) is an additive manufacturing technique commonly used in industry to produce complicated structures sustainably. Although promising, the technology frequently suffers from defects, including warp deformation compromising the structural integrity of the component and, in extreme cases, the printer itself. To avoid the adverse effects of warp deformation, this thesis explores the implementation of deep neural networks to form a closed-loop in-process monitoring architecture using Convolutional Neural Networks (CNN) capable of pausing a printer once a warp is detected. Any neural network, including CNNs, depend on their hyperparameters. Hyperparameters can either be optimized using a manual or an automated approach. A manual approach, although easier to program, is often time-consuming, inaccurate and computationally inefficient, necessitating an automated approach. To evaluate this statement, classification models were optimized through both approaches and tested in a laboratory scaled manufacturing environment. The automated approach utilized a Bayesianbased optimizer yielding a mean accuracy of 100% significantly higher than 36% achieved by the other approach.


2016 ◽  
Vol 853 ◽  
pp. 394-398 ◽  
Author(s):  
M.G. Rashed ◽  
Mahmud Ashraf ◽  
Paul Jonathan Hazell

Although metallic microlattice material is a sought after research topic currently, it suffers from manufacturing defects such as micro-voids formation due to missed fusion, stemmed from the stacking-layered-fused nature of the metal powder in Powder Bed Fusion (PBF) process. These defects result in weakening of the finished part and reduced mechanical performance under service load, possibly leading to low fatigue strength, and raise serious question about 3D printed structural integrity. Numerical simulation of the built parts also becomes difficult due to irregular physical properties including geometry and anisotropic nature of mechanical properties. This paper provides an overview on the manufacturing issues and the subsequent hurdle faced in numerical simulation of metallic microlattices. While the issues in manufacturing are related to emerging additive manufacturing techniques and out of control of end users, it has been suggested that the limitations in numerical simulation can be overcome by employing advanced approaches, in both physical properties measurement and modeling.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 901
Author(s):  
Emad Naseri ◽  
Christopher Cartmell ◽  
Matthew Saab ◽  
Russell G. Kerr ◽  
Ali Ahmadi

Herein, novel drug-eluting, bio-absorbable scaffold intended to cover piercing studs is introduced. This “biopierce” will stay in human tissue following piercing, and will slowly release an antimicrobial agent to prevent infection while the wound heals. Nearly 20% of all piercings lead to local infection. Therefore, it is imperative to develop alternative methods of piercing aftercare to prevent infection. Biopierces were made using mupirocin loaded poly-lactic-co-glycolic acid (PLGA) biomaterial ink, and a low-temperature 3D printing technique was used to fabricate the biopierces. Proton nuclear magnetic resonance (1H NMR) spectroscopy was used to confirm the complete removal of the solvent, and liquid chromatography high-resolution mass spectrometry (LC-HRMS) was used to confirm the structural integrity of mupirocin and to quantify the amount of the released drug over time. The efficacy of the biopierces against Staphylococcus aureus, one of the most common piercing-site pathogens, was confirmed over two weeks using in vitro antimicrobial susceptibility testing.


Materialia ◽  
2020 ◽  
Vol 10 ◽  
pp. 100650
Author(s):  
Cemile Basgul ◽  
Daniel W. MacDonald ◽  
Ryan Siskey ◽  
Steven M. Kurtz

2020 ◽  
Vol 4 (3) ◽  
pp. 94 ◽  
Author(s):  
Arash Afshar ◽  
Roy Wood

Additive manufacturing, or 3D printing, has had a big impact on the manufacturing world through its low cost, material recyclability, and fabrication of intricate geometries with a high resolution. Three-dimensionally printed polymer structures in aerospace, marine, construction, and automotive industries are usually intended for service in outdoor environments. During long-term exposures to harsh environmental conditions, the mechanical properties of these structures can be degraded significantly. Developing coating systems for 3D printed parts that protect the structural surface against environmental effects and provide desired surface properties is crucial for the long-term integrity of these structures. In this study, a novel method was presented to create 3D printed structures coated with a weather-resistant material in a single manufacturing operation using multi-material additive manufacturing. One group of specimens was 3D printed from acrylonitrile-butadiene-styrene (ABS) material and the other group was printed from ABS and acrylic-styrene-acrylonitrile (ASA) as a substrate and coating material, respectively. The uncoated ABS specimens suffered significant degradation in the mechanical properties, particularly in the failure strain and toughness, during exposure to UV radiation, moisture, and high temperature. However, the ASA coating preserved the mechanical properties and structural integrity of ABS 3D printed structures in aggressive environments.


2019 ◽  
Vol 50 (2) ◽  
pp. 163-168
Author(s):  
Fatima AlSakka ◽  
Mohammad Hasan Senan ◽  
Abdallah Abou Yassin ◽  
Farook Hamzeh

3D concrete printing has proven to be a highly favorable construction method in terms of time reduction, cost optimization, architectural flexibility, sustainability, energy use, and others. However, the quality of the final product certainly has a priority over all of these attractive features of the technology. Yet research has given little consideration to investigating the structural integrity of 3D printed concrete structures. Research states that printed structures exhibit sufficient strength as compared to traditionally built structures. Nevertheless, the fact that this strength is sensitive to numerous factors including the machine setup, the printing process, existing conditions (e. g. temperature) and others, should be studied. A major determinant of the reliability and quality of printed structures is the adhesion level between subsequent layers. Poorly adhered concrete surfaces result in weak bonds that in turn reduce rupture strength. The time elapsed between printing successive concrete layers should be bounded to ensure that concrete is flowable enough to adhere to previous layers. For a given concrete mixture design, this time is a function of travel distance and speed. Thus, this research aims at finding the optimum printing path that minimizes the formation of weak bonds without compromising buildability for a given structure and a defined speed. The research employs Discrete Event Simulation to model the printing process for numerous possible travel paths and assess their adequacy by comparing travel time to allowable time limits.


2020 ◽  
Vol 160 ◽  
pp. 01007
Author(s):  
K. Zawadzki ◽  
C. Kuzalski ◽  
W. Śmiechowicz ◽  
M. Tarkowski ◽  
D. Kądrowski ◽  
...  

Small Wind Turbines (SWTs) are an increasingly developing Renewable Energy Source, thanks to the gradual popularisation of the prosumer energy generation approach. This, however, requires maximum safety of the machine, working next to households. Reliability is also necessary from the financial point of view, as SWTs should withstand 20 - 30 years of operation without any serious failure to ensure investment profitability. The weakest SWT element is arguably its most exposed one - the rotor - hence the important role played by the blade strength tests. The experimental analysis becomes preferable with increasing popularity of new materials (composites) and production techniques (additive manufacturing). This paper sets out to develop a test stand for static strength examination of 3D-printed SWT blades. This kind of objects is often considered as more vulnerable to structural failures than those created via machining techniques, due to their anisotropic structure, so ensuring structural integrity is crucial for safety reasons.


Sign in / Sign up

Export Citation Format

Share Document