Population dynamics can be more important than physiological limits for determining range shifts under climate change

2013 ◽  
Vol 19 (10) ◽  
pp. 3224-3237 ◽  
Author(s):  
Damien A. Fordham ◽  
Camille Mellin ◽  
Bayden D. Russell ◽  
Reşit H. Akçakaya ◽  
Corey J. A. Bradshaw ◽  
...  
2020 ◽  
Vol 51 (1) ◽  
pp. 561-586 ◽  
Author(s):  
Jennifer A. Rudgers ◽  
Michelle E. Afkhami ◽  
Lukas Bell-Dereske ◽  
Y. Anny Chung ◽  
Kerri M. Crawford ◽  
...  

Interactions between plants and microbes have important influences on evolutionary processes, population dynamics, community structure, and ecosystem function. We review the literature to document how climate change may disrupt these ecological interactions and develop a conceptual framework to integrate the pathways of plant-microbe responses to climate over different scales in space and time. We then create a blueprint to aid generalization that categorizes climate effects into changes in the context dependency of plant-microbe pairs, temporal mismatches and altered feedbacks over time, or spatial mismatches that accompany species range shifts. We pair a new graphical model of how plant-microbe interactions influence resistance to climate change with a statistical approach to predictthe consequences of increasing variability in climate. Finally, we suggest pathways through which plant-microbe interactions can affect resilience during recovery from climate disruption. Throughout, we take a forward-looking perspective, highlighting knowledge gaps and directions for future research.


Author(s):  
Jerelle A. Jesse ◽  
M. Victoria Agnew ◽  
Kohma Arai ◽  
C. Taylor Armstrong ◽  
Shannon M. Hood ◽  
...  

AbstractDiseases are important drivers of population and ecosystem dynamics. This review synthesizes the effects of infectious diseases on the population dynamics of nine species of marine organisms in the Chesapeake Bay. Diseases generally caused increases in mortality and decreases in growth and reproduction. Effects of diseases on eastern oyster (Crassostrea virginica) appear to be low in the 2000s compared to effects in the 1980s–1990s. However, the effects of disease were not well monitored for most of the diseases in marine organisms of the Chesapeake Bay, and few studies considered effects on growth and reproduction. Climate change and other anthropogenic effects are expected to alter host-pathogen dynamics, with diseases of some species expected to worsen under predicted future conditions (e.g., increased temperature). Additional study of disease prevalence, drivers of disease, and effects on population dynamics could improve fisheries management and forecasting of climate change effects on marine organisms in the Chesapeake Bay.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dennis Rödder ◽  
Thomas Schmitt ◽  
Patrick Gros ◽  
Werner Ulrich ◽  
Jan Christian Habel

AbstractClimate change impacts biodiversity and is driving range shifts of species and populations across the globe. To understand the effects of climate warming on biota, long-term observations of the occurrence of species and detailed knowledge on their ecology and life-history is crucial. Mountain species particularly suffer under climate warming and often respond to environmental changes by altitudinal range shifts. We assessed long-term distribution trends of mountain butterflies across the eastern Alps and calculated species’ specific annual range shifts based on field observations and species distribution models, counterbalancing the potential drawbacks of both approaches. We also compiled details on the ecology, behaviour and life-history, and the climate niche of each species assessed. We found that the highest altitudinal maxima were observed recently in the majority of cases, while the lowest altitudes of observations were recorded before 1980. Mobile and generalist species with a broad ecological amplitude tended to move uphill more than specialist and sedentary species. As main drivers we identified climatic conditions and topographic variables, such as insolation and solar irradiation. This study provides important evidence for responses of high mountain taxa to rapid climate change. Our study underlines the advantage of combining historical surveys and museum collection data with cutting-edge analyses.


2021 ◽  
Vol 102 (1) ◽  
Author(s):  
Benjamin Wagner ◽  
Patrick J. Baker ◽  
Stephen B. Stewart ◽  
Linda F. Lumsden ◽  
Jenny L. Nelson ◽  
...  

Bothalia ◽  
2008 ◽  
Vol 38 (2) ◽  
Author(s):  
L. Agenbag ◽  
K. J. Elser ◽  
G. F. Midgley ◽  
C. Boucher

A temperature and moisture gradient on the equator-facing slope of Jonaskop on the Riviersonderend Mountain. Westem Cape has been selected as an important gradient for monitoring the effects of climate change on fynbos and the Fynbos- Succulent Karoo ecotone. This study provides a description of plant diversity patterns, growth form composition and species turnover across the gradient and the results of four years of climate monitoring at selected points along the altitudinal gradient.The aim o f this study is to provide data for a focused monitoring strategy for the early detection of climate change-related shifts in species’ ranges, as well as gaining a better understanding of the role of climate variability in shaping species growth responses, their distributions, and other ecosystem processes.


Sign in / Sign up

Export Citation Format

Share Document