Climate Disruption of Plant-Microbe Interactions

2020 ◽  
Vol 51 (1) ◽  
pp. 561-586 ◽  
Author(s):  
Jennifer A. Rudgers ◽  
Michelle E. Afkhami ◽  
Lukas Bell-Dereske ◽  
Y. Anny Chung ◽  
Kerri M. Crawford ◽  
...  

Interactions between plants and microbes have important influences on evolutionary processes, population dynamics, community structure, and ecosystem function. We review the literature to document how climate change may disrupt these ecological interactions and develop a conceptual framework to integrate the pathways of plant-microbe responses to climate over different scales in space and time. We then create a blueprint to aid generalization that categorizes climate effects into changes in the context dependency of plant-microbe pairs, temporal mismatches and altered feedbacks over time, or spatial mismatches that accompany species range shifts. We pair a new graphical model of how plant-microbe interactions influence resistance to climate change with a statistical approach to predictthe consequences of increasing variability in climate. Finally, we suggest pathways through which plant-microbe interactions can affect resilience during recovery from climate disruption. Throughout, we take a forward-looking perspective, highlighting knowledge gaps and directions for future research.

2012 ◽  
Vol 37 (2) ◽  
pp. 206-226 ◽  
Author(s):  
Cherith A. Moses

Rock coasts are widespread in the tropics and exhibit particular morphologies that may be specific to their tropical, micro-tidal location. Notches are particularly well developed, often linked to onshore cliffs and fronted by subhorizontal platforms. Through a review of previously published data across the tropics, average cliff face erosion rates are calculated as 2.15 ± 2.62 mm a−1, intertidal erosion rates 3.03 ± 7.50 mm a−1 and subtidal erosion rates 0.96 ± 0.44 mm a−1. Intertidal erosion rates are variable within and across latitudinal ranges: within 10°N and S of the equator average rates are 1.42 ± 1.22 mm a−1; between latitudes of 10°and 20°, 0.88 ± 1.16 mm a−1 and between latitudes of 20°and 30°, 2.04 ± 2.57 mm a−1. A consideration of temporal variations in intertidal erosion rates provides insights into the potential impacts of climate change on the erosion dynamics of rock coasts in the tropics. This paper highlights some of the interactions over time and space between process and measurement that continue to limit our understanding of, and ability to model, the erosion dynamics of tropical rock coasts. It concludes by identifying potentially fruitful areas for future research.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Barbara Bigliardi ◽  
Giovanna Ferraro ◽  
Serena Filippelli ◽  
Francesco Galati

PurposeThrough a comprehensive review of the literature on open innovation (OI), this study aimed to achieve two objectives: (1) to identify the main thematic areas discussed in the past and track their evolution over time; and (2) to provide recommendations for future research avenues.Design/methodology/approachTo achieve the first objective, a method based on text mining was implemented, with the analysis focusing on 1,772 journal articles published between 2003 and 2018. For the second objective, a review based on recent and relevant papers was conducted for each thematic area.FindingsThe paper identified nine thematic areas explored in existing research: (1) context-dependency of OI, (2) collaborative frameworks, (3) organizational dimensions of OI, (4) performance and OI, (5) external search for OI, (6) OI in small and medium-sized enterprises, (7) OI in the pharmaceutical industry, (8) OI and intellectual property rights, and (9) technology. The analysis of the most recent papers belonging to the more investigated areas offers suitable suggestions for future research avenues.Originality/valueTo the best of the authors’ knowledge, no review has yet been undertaken to reorganize the OI literature.


2021 ◽  
Author(s):  
◽  
Samuel Olufson

<p>Climate change impacts are beginning to be felt across the world. Therefore, the development and understanding of adaptation options is becoming more important. Sea-level rise and its associated impacts are predicted to continue and accelerate well into the next century. As such, it is important that adaptation options which reduce risks associated with sea-level rise are developed and are well understood. Managed retreat is one such option. While research on managed retreat is increasing, there is a lack of literature that identifies what managed retreat comprises, how to plan and stage the option over time, and how to cost it as an adaptation option.  This thesis aims to address this gap in the literature by answering the following three questions: (1) what are the issues related to implementing managed retreat as an adaptation strategy in coastal areas, now, and moving into the future?; (2) what are the components of managed retreat?; and (3) what framework could be developed for costing managed retreat?  A qualitative ‘desk-top’ approach was taken to deconstruct the components of managed retreat across space and time and to develop a framework for costing the components as part of an adaptation strategy. An in-depth analysis of literature, enabled an understanding of managed retreat implementation, and also informed the development of a component typology and costing framework for the adaptation option. The typology and framework were then tested for relevance and utility for decision making through a series of semi-structured discussions with key informants working in climate change adaptation.  Using the component typology and costing framework, a new approach is presented for staging and costing managed retreat, over time and in different contexts. The typology and framework contribute knowledge and guidance for local governments and infrastructure agencies when discussing managed retreat with their communities, for identifying and staging managed retreat, and for the costing of components. It does this by presenting components in stages as overlapping and parallel pathways, providing groupings of components according to types of costs, and identifying appropriate costing methodologies that enable the implementation of managed retreat. To conclude, the thesis suggests areas for future research on managed retreat.</p>


2021 ◽  
Author(s):  
◽  
Samuel Olufson

<p>Climate change impacts are beginning to be felt across the world. Therefore, the development and understanding of adaptation options is becoming more important. Sea-level rise and its associated impacts are predicted to continue and accelerate well into the next century. As such, it is important that adaptation options which reduce risks associated with sea-level rise are developed and are well understood. Managed retreat is one such option. While research on managed retreat is increasing, there is a lack of literature that identifies what managed retreat comprises, how to plan and stage the option over time, and how to cost it as an adaptation option.  This thesis aims to address this gap in the literature by answering the following three questions: (1) what are the issues related to implementing managed retreat as an adaptation strategy in coastal areas, now, and moving into the future?; (2) what are the components of managed retreat?; and (3) what framework could be developed for costing managed retreat?  A qualitative ‘desk-top’ approach was taken to deconstruct the components of managed retreat across space and time and to develop a framework for costing the components as part of an adaptation strategy. An in-depth analysis of literature, enabled an understanding of managed retreat implementation, and also informed the development of a component typology and costing framework for the adaptation option. The typology and framework were then tested for relevance and utility for decision making through a series of semi-structured discussions with key informants working in climate change adaptation.  Using the component typology and costing framework, a new approach is presented for staging and costing managed retreat, over time and in different contexts. The typology and framework contribute knowledge and guidance for local governments and infrastructure agencies when discussing managed retreat with their communities, for identifying and staging managed retreat, and for the costing of components. It does this by presenting components in stages as overlapping and parallel pathways, providing groupings of components according to types of costs, and identifying appropriate costing methodologies that enable the implementation of managed retreat. To conclude, the thesis suggests areas for future research on managed retreat.</p>


2020 ◽  
Vol 34 (5) ◽  
pp. 659-680 ◽  
Author(s):  
Anh The Than ◽  
Fleur Ponton ◽  
Juliano Morimoto

Abstract Population density modulates a wide range of eco-evolutionary processes including inter- and intra-specific competition, fitness and population dynamics. In holometabolous insects, the larval stage is particularly susceptible to density-dependent effects because the larva is the resource-acquiring stage. Larval density-dependent effects can modulate the expression of life-history traits not only in the larval and adult stages but also downstream for population dynamics and evolution. Better understanding the scope and generality of density-dependent effects on life-history traits of current and future generations can provide useful knowledge for both theory and experiments in developmental ecology. Here, we review the literature on larval density-dependent effects on fitness of non-social holometabolous insects. First, we provide a functional definition of density to navigate the terminology in the literature. We then classify the biological levels upon which larval density-dependent effects can be observed followed by a review of the literature produced over the past decades across major non-social holometabolous groups. Next, we argue that host-microbe interactions are yet an overlooked biological level susceptible to density-dependent effects and propose a conceptual model to explain how density-dependent effects on host-microbe interactions can modulate density-dependent fitness curves. In summary, this review provides an integrative framework of density-dependent effects across biological levels which can be used to guide future research in the field of ecology and evolution.


2021 ◽  
Vol 66 (1) ◽  
pp. 373-388
Author(s):  
Lucy Gilbert

Ticks exist on all continents and carry more zoonotic pathogens than any other type of vector. Ticks spend most of their lives in the external environment away from the host and are thus expected to be affected by changes in climate. Most empirical and theoretical studies demonstrate or predict range shifts or increases in ticks and tick-borne diseases, but there can be a lot of heterogeneity in such predictions. Tick-borne disease systems are complex, and determining whether changes are due to climate change or other drivers can be difficult. Modeling studies can help tease apart and understand the roles of different drivers of change. Predictive models can also be invaluable in projecting changes according to different climate change scenarios. However, validating these models remains challenging, and estimating uncertainty in predictions is essential. Another focus for future research should be assessing the resilience of ticks and tick-borne pathogens to climate change.


2013 ◽  
Vol 19 (10) ◽  
pp. 3224-3237 ◽  
Author(s):  
Damien A. Fordham ◽  
Camille Mellin ◽  
Bayden D. Russell ◽  
Reşit H. Akçakaya ◽  
Corey J. A. Bradshaw ◽  
...  

2020 ◽  
Vol 29 (12) ◽  
pp. 2190-2202
Author(s):  
Dominik Poniatowski ◽  
Christian Beckmann ◽  
Franz Löffler ◽  
Thorsten Münsch ◽  
Felix Helbing ◽  
...  

2021 ◽  
Vol 7 (15) ◽  
pp. eabe1110 ◽  
Author(s):  
Shirin Taheri ◽  
Babak Naimi ◽  
Carsten Rahbek ◽  
Miguel B. Araújo

Studies have documented climate change–induced shifts in species distributions but uncertainties associated with data and methods are typically unexplored. We reviewed 240 reports of climate-related species-range shifts and classified them based on three criteria. We ask whether observed distributional shifts are compared against random expectations, whether multicausal factors are examined on equal footing, and whether studies provide sufficient documentation to enable replication. We found that only ~12.1% of studies compare distributional shifts across multiple directions, ~1.6% distinguish observed patterns from random expectations, and ~19.66% examine multicausal factors. Last, ~75.5% of studies report sufficient data and results to allow replication. We show that despite gradual improvements over time, there is scope for raising standards in data and methods within reports of climate-change induced shifts in species distribution. Accurate reporting is important because policy responses depend on them. Flawed assessments can fuel criticism and divert scarce resources for biodiversity to competing priorities.


Author(s):  
Stephanie Jenouvrier ◽  
Matthew C. Long ◽  
Christophe Coste ◽  
Marika Holland ◽  
Marlène Gamelon ◽  
...  

Climate impacts are not always easily discerned in wild populations as climate change occurs in the context of natural variability. Furthermore, species responses to climate change and variability differ among life histories. The time of emergence (ToE) identifies when the signal of anthropogenic climate change can be quantitatively distinguished from noise associated with natural variability. This concept has been applied extensively in the climate sciences, but has not yet formally been explored in the context of population dynamics. Here, we present a theoretical assessment of the ToE of climate-driven signals in population dynamics (ToEpop) to detect climate signals in populations. We identify the dependence of ToEpop on the magnitude of climate trends and variability and explore the demographic controls on ToEpop. We demonstrate that different life histories (fast species vs. slow species), demographic processes (survival, reproduction) and functional relationships between climate and demographic rates, yield population dynamics that filter trends and variability in climate differently. We illustrate empirically how to detect the point in time when anthropogenic signals in populations emerge from the envelope of natural variability for a species threatened by climate change: the emperor penguin. Finally, we propose six testable hypotheses and a road map for future research.


Sign in / Sign up

Export Citation Format

Share Document