scholarly journals Winter oilseed production for biofuel in the US Corn Belt: opportunities and limitations

GCB Bioenergy ◽  
2016 ◽  
Vol 9 (3) ◽  
pp. 508-524 ◽  
Author(s):  
Aaron J. Sindelar ◽  
Marty R. Schmer ◽  
Russell W. Gesch ◽  
Frank Forcella ◽  
Carrie A. Eberle ◽  
...  
Keyword(s):  
The Us ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alan Willse ◽  
Lex Flagel ◽  
Graham Head

Abstract Following the discovery of western corn rootworm (WCR; Diabrotica virgifera virgifera) populations resistant to the Bacillus thuringiensis (Bt) protein Cry3Bb1, resistance was genetically mapped to a single locus on WCR chromosome 8 and linked SNP markers were shown to correlate with the frequency of resistance among field-collected populations from the US Corn Belt. The purpose of this paper is to further investigate the relationship between one of these resistance-linked markers and the causal resistance locus. Using data from laboratory bioassays and field experiments, we show that one allele of the resistance-linked marker increased in frequency in response to selection, but was not perfectly linked to the causal resistance allele. By coupling the response to selection data with a genetic model of the linkage between the marker and the causal allele, we developed a model that allowed marker allele frequencies to be mapped to causal allele frequencies. We then used this model to estimate the resistance allele frequency distribution in the US Corn Belt based on collections from 40 populations. These estimates suggest that chromosome 8 Cry3Bb1 resistance allele frequency was generally low (<10%) for 65% of the landscape, though an estimated 13% of landscape has relatively high (>25%) resistance allele frequency.


2017 ◽  
Vol 114 (45) ◽  
pp. 12081-12085 ◽  
Author(s):  
Timothy J. Griffis ◽  
Zichong Chen ◽  
John M. Baker ◽  
Jeffrey D. Wood ◽  
Dylan B. Millet ◽  
...  

Nitrous oxide (N2O) has a global warming potential that is 300 times that of carbon dioxide on a 100-y timescale, and is of major importance for stratospheric ozone depletion. The climate sensitivity of N2O emissions is poorly known, which makes it difficult to project how changing fertilizer use and climate will impact radiative forcing and the ozone layer. Analysis of 6 y of hourly N2O mixing ratios from a very tall tower within the US Corn Belt—one of the most intensive agricultural regions of the world—combined with inverse modeling, shows large interannual variability in N2O emissions (316 Gg N2O-N⋅y−1to 585 Gg N2O-N⋅y−1). This implies that the regional emission factor is highly sensitive to climate. In the warmest year and spring (2012) of the observational period, the emission factor was 7.5%, nearly double that of previous reports. Indirect emissions associated with runoff and leaching dominated the interannual variability of total emissions. Under current trends in climate and anthropogenic N use, we project a strong positive feedback to warmer and wetter conditions and unabated growth of regional N2O emissions that will exceed 600 Gg N2O-N⋅y−1, on average, by 2050. This increasing emission trend in the US Corn Belt may represent a harbinger of intensifying N2O emissions from other agricultural regions. Such feedbacks will pose a major challenge to the Paris Agreement, which requires large N2O emission mitigation efforts to achieve its goals.


2019 ◽  
Vol 14 (12) ◽  
pp. 124038 ◽  
Author(s):  
Jillian M Deines ◽  
Sherrie Wang ◽  
David B Lobell

2015 ◽  
Vol 7 (1) ◽  
pp. 951-970 ◽  
Author(s):  
Linglin Zeng ◽  
Brian Wardlow ◽  
Tsegaye Tadesse ◽  
Jie Shan ◽  
Michael Hayes ◽  
...  

Author(s):  
Colin Lewis-Beck ◽  
Jarad Niemi ◽  
Petruta Caragea ◽  
Brian Hornbuckle ◽  
Victoria Walker
Keyword(s):  
The Us ◽  

2021 ◽  
Vol 12 ◽  
Author(s):  
Mohsen Shahhosseini ◽  
Guiping Hu ◽  
Saeed Khaki ◽  
Sotirios V. Archontoulis

We investigate the predictive performance of two novel CNN-DNN machine learning ensemble models in predicting county-level corn yields across the US Corn Belt (12 states). The developed data set is a combination of management, environment, and historical corn yields from 1980 to 2019. Two scenarios for ensemble creation are considered: homogenous and heterogenous ensembles. In homogenous ensembles, the base CNN-DNN models are all the same, but they are generated with a bagging procedure to ensure they exhibit a certain level of diversity. Heterogenous ensembles are created from different base CNN-DNN models which share the same architecture but have different hyperparameters. Three types of ensemble creation methods were used to create several ensembles for either of the scenarios: Basic Ensemble Method (BEM), Generalized Ensemble Method (GEM), and stacked generalized ensembles. Results indicated that both designed ensemble types (heterogenous and homogenous) outperform the ensembles created from five individual ML models (linear regression, LASSO, random forest, XGBoost, and LightGBM). Furthermore, by introducing improvements over the heterogenous ensembles, the homogenous ensembles provide the most accurate yield predictions across US Corn Belt states. This model could make 2019 yield predictions with a root mean square error of 866 kg/ha, equivalent to 8.5% relative root mean square and could successfully explain about 77% of the spatio-temporal variation in the corn grain yields. The significant predictive power of this model can be leveraged for designing a reliable tool for corn yield prediction which will in turn assist agronomic decision makers.


2011 ◽  
Vol 27 (4) ◽  
pp. 481-494 ◽  
Author(s):  
Ji-Hye Lee ◽  
Sin-Kyu Kang ◽  
Keun-Chang Jang ◽  
Jong-Han Ko ◽  
Suk-Young Hong

Sign in / Sign up

Export Citation Format

Share Document