scholarly journals Using Wavelet Coherence to Characterize Surface Water Infiltration into a Low‐Lying Karst Aquifer

Ground Water ◽  
2020 ◽  
Author(s):  
Philip Schuler ◽  
Èlia Cantoni ◽  
Léa Duran ◽  
Paul Johnston ◽  
Laurence Gill
Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 678 ◽  
Author(s):  
Renato Morbidelli ◽  
Corrado Corradini ◽  
Carla Saltalippi ◽  
Alessia Flammini ◽  
Jacopo Dari ◽  
...  

Rainfall infiltration modeling over surfaces with significant slopes is an unsolved problem. Even though water infiltration occurs over soil surfaces with noticeable gradients in most real situations, the typical mathematical models used were developed for infiltration over horizontal surfaces. In addition, recent investigations on infiltration over sloping surfaces have provided conflicting results, suggesting that our understanding of the process may still be lacking. In this study, our objective is to specifically examine if the surface water velocity that is negligible over near horizontal soil surfaces can affect the infiltration process over steep slopes. A new conceptual model representing a wide range of experimental results is proposed. The model represents water flow as an ensemble of infinitesimal “particles” characterized by specific velocities and assumes that only “particles” with velocity less than a threshold value can contribute to the infiltration process. The velocity distribution and the threshold value depend on slope and soil type, respectively. This conceptual model explains observed results and serves as a foundation for developing further experiments and refining models that offer more realistic representations of infiltration over sloping surfaces.


Geologos ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 35-41
Author(s):  
Jozef Gorski ◽  
Krzysztof Dragon ◽  
Roksana Kruc-Fijalkowska ◽  
Magdalena Matusiak

Abstract In the present work measurements of chloride concentrations were used to assess the variability of infiltration conditions and contributions of surface water and local groundwater to the discharge of wells at Krajkowo riverbank filtration site (western Poland). Tests were performed on samples from 26 wells located in a well gallery close to the River Warta. Due to higher chloride concentrations in river water in comparison with local groundwater, significant differences in concentrations in samples from individual wells were noted. In particular, lower chloride concentrations in 11 wells were recorded, which can be linked to the local occurrence of low-permeability deposits in the superficial zone; a locally higher degree of riverbed sediment clogging in the highly convex meandering zone, where strong erosion of the riverbed occurred, which in turn led to increased clogging; the occurrence of a more intensive groundwater inflow into the river valley due to water infiltration from a smaller river entering the River Warta valley, as well as unfavourable conditions for the infiltration of surface water to the lower part of the aquifer with a greater thickness. Differences in chloride concentrations observed were also used to quantify approximately river water contribution to the well production. The average contribution of the River Warta to the recharge of the entire well gallery was estimated at 59.8%.


2019 ◽  
Vol 16 (4) ◽  
pp. 806-820 ◽  
Author(s):  
Guo-xiang Tu ◽  
Da Huang ◽  
Hui Deng

Hydrology ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 147
Author(s):  
Matthew C. LaFevor ◽  
Carlos E. Ramos-Scharrón

Concerns over freshwater scarcity for agriculture, ecosystems, and human consumption are driving the construction of infiltration trenches in many mountain protected areas. This study examines the effectiveness of infiltration trenches in a subalpine forested catchment in central Mexico, where public and private organizations have been constructing trenches for ~60 years. We rely on empirical data to develop rainfall-runoff models for two scenarios: a baseline (no trenches) and a trenched scenario. Field measurements of infiltration capacities in forested and trenched soils (n = 56) and two years of meteorological data are integrated into a semi-distributed runoff model of 28 trenched sub-catchments. Sensitivity analysis and hydrographs are used to evaluate differences in total runoff and infiltration between the two scenarios. Multiple logistic regression is used to evaluate the effects of environmental and management variables on the likelihood of runoff response and trench overtopping. The findings show that soil infiltration capacity and rainfall intensity are primary drivers of runoff and trench overtopping. However, trenches provided only a 1.2% increase in total infiltration over the two-year period. This marginal benefit is discussed in relation to the potential adverse environmental impacts of trench construction. Overall, our study finds that as a means of runoff harvesting in these forested catchments, trenches provide negligible infiltration benefits. As a result, this study cautions against further construction of infiltration trenches in forested catchments without careful ex ante assessment of rainfall-runoff relationships. The results of this study have important implications for forest water management in Mexico and elsewhere, where similar earthworks are employed to enhance runoff harvesting and surface water infiltration.


2012 ◽  
Vol 599 ◽  
pp. 732-738
Author(s):  
Guang Hua Yao ◽  
Zheng Hua Chen ◽  
Chang Peng Tu ◽  
Xi Qiong Xiang ◽  
Sheng Xu

Using special hydrogeology survey, groundwater level observation, water pressure test, pit infiltration test, imaging well log technique and Hertz wave CT in the mining subsidence area and its nearby, failure mode of karst water under inclined coal seam mining in hilly area is studied. Contrasted surface infiltration capacity of limestone in 1955 with in 2011, it verifies that aquicludes and aquifers above goaf and near ground are damaged, therefore karst water in different aquifers become a unified water-bearing body. In the mining subsidence area, karst water forms a cone of depression, and water-bearing body of underground karst water supplied by vertical seepage is the main type of surface water infiltration. Outside of mining subsidence area, the surface water and the karst water are supplied by each other, and overland flow is the main type of surface water.


Sign in / Sign up

Export Citation Format

Share Document