scholarly journals A New Conceptual Model for Slope-Infiltration

Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 678 ◽  
Author(s):  
Renato Morbidelli ◽  
Corrado Corradini ◽  
Carla Saltalippi ◽  
Alessia Flammini ◽  
Jacopo Dari ◽  
...  

Rainfall infiltration modeling over surfaces with significant slopes is an unsolved problem. Even though water infiltration occurs over soil surfaces with noticeable gradients in most real situations, the typical mathematical models used were developed for infiltration over horizontal surfaces. In addition, recent investigations on infiltration over sloping surfaces have provided conflicting results, suggesting that our understanding of the process may still be lacking. In this study, our objective is to specifically examine if the surface water velocity that is negligible over near horizontal soil surfaces can affect the infiltration process over steep slopes. A new conceptual model representing a wide range of experimental results is proposed. The model represents water flow as an ensemble of infinitesimal “particles” characterized by specific velocities and assumes that only “particles” with velocity less than a threshold value can contribute to the infiltration process. The velocity distribution and the threshold value depend on slope and soil type, respectively. This conceptual model explains observed results and serves as a foundation for developing further experiments and refining models that offer more realistic representations of infiltration over sloping surfaces.

2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Tebogo M. Mokgehle ◽  
Nikita T. Tavengwa

AbstractAcid mine drainage is the reaction of surface water with sub-surface water located on sulfur bearing rocks, resulting in sulfuric acid. These highly acidic conditions result in leaching of non-biodegradeable heavy metals from rock which then accumulate in flora, posing a significant environmental hazard. Hence, reliable, cost effective remediation techniques are continuously sought after by researchers. A range of materials were examined as adsorbents in the extraction of heavy metal ions from acid mine drainage (AMD). However, these materials generally have moderate to poor adsorption capacities. To address this problem, researchers have recently turned to nano-sized materials to enhance the surface area of the adsorbent when in contact with the heavy metal solution. Lately, there have been developments in studying the surface chemistry of nano-engineered materials during adsorption, which involved alterations in the physical and chemical make-up of nanomaterials. The resultant surface engineered nanomaterials have been proven to show rapid adsorption rates and remarkable adsorption capacities for removal of a wide range of heavy metal contaminants in AMD compared to the unmodified nanomaterials. A brief overview of zeolites as adsorbents and the developent of nanosorbents to modernly applied magnetic sorbents and ion imprinted polymers will be discussed. This work provides researchers with thorough insight into the adsorption mechanism and performance of nanosorbents, and finds common ground between the past, present and future of these versatile materials.


2021 ◽  
Vol 13 (12) ◽  
pp. 2293
Author(s):  
Marina Amadori ◽  
Virginia Zamparelli ◽  
Giacomo De Carolis ◽  
Gianfranco Fornaro ◽  
Marco Toffolon ◽  
...  

The SAR Doppler frequencies are directly related to the motion of the scatterers in the illuminated area and have already been used in marine applications to monitor moving water surfaces. Here we investigate the possibility of retrieving surface water velocity from SAR Doppler analysis in medium-size lakes. ENVISAT images of the test site (Lake Garda) are processed and the Doppler Centroid Anomaly technique is adopted. The resulting surface velocity maps are compared with the outputs of a hydrodynamic model specifically validated for the case study. Thermal images from MODIS Terra are used in support of the modeling results. The surface velocity retrieved from SAR is found to overestimate the numerical results and the existence of a bias is investigated. In marine applications, such bias is traditionally removed through Geophysical Model Functions (GMFs) by ascribing it to a fully developed wind waves spectrum. We found that such an assumption is not supported in our case study, due to the small-scale variations of topography and wind. The role of wind intensity and duration on the results from SAR is evaluated, and the inclusion of lake bathymetry and the SAR backscatter gradient is recommended for the future development of GMFs suitable for lake environments.


2017 ◽  
Vol 14 (6) ◽  
pp. 1076-1085 ◽  
Author(s):  
Dong-bing Cheng ◽  
Lin-yao Dong ◽  
Feng Qian ◽  
Bei Sun

2021 ◽  
Author(s):  
Aditya Varma ◽  
Binod Sreenivasan

<p>It is known that the columnar structures in rapidly rotating convection are affected by the magnetic field in ways that enhance their helicity. This may explain the dominance of the axial dipole in rotating dynamos. Dynamo simulations starting from a small seed magnetic field have shown that the growth of the field is accompanied by the excitation of convection in the energy-containing length scales. Here, this process is studied by examining axial wave motions in the growth phase of the dynamo for a wide range of thermal forcing. In the early stages of evolution where the field is weak, fast inertial waves weakly modified by the magnetic field are abundantly present. As the field strength(measured by the ratio of the Alfven wave to the inertial wave frequency) exceeds a threshold value, slow magnetostrophic waves are spontaneously generated. The excitation of the slow waves coincides with the generation of helicity through columnar motion, and is followed by the formation of the axial dipole from a chaotic, multipolar state. In strongly driven convection, the slow wave frequency is attenuated, causing weakening of the axial dipole intensity. Kinematic dynamo simulations at the same parameters, where only fast inertial waves are present, fail to produce the axial dipole field. The dipole field in planetary dynamos may thus be supported by the helicity from slow magnetostrophic waves.</p>


2021 ◽  
Vol 288 (1944) ◽  
pp. 20202716
Author(s):  
Steve Kett ◽  
Ayush Pathak ◽  
Stefano Turillazzi ◽  
Duccio Cavalieri ◽  
Massimiliano Marvasi

Arthropods can produce a wide range of antifungal compounds, including specialist proteins, cuticular products, venoms and haemolymphs. In spite of this, many arthropod taxa, particularly eusocial insects, make use of additional antifungal compounds derived from their mutualistic association with microbes. Because multiple taxa have evolved such mutualisms, it must be assumed that, under certain ecological circumstances, natural selection has favoured them over those relying upon endogenous antifungal compound production. Further, such associations have been shown to persist versus specific pathogenic fungal antagonists for more than 50 million years, suggesting that compounds employed have retained efficacy in spite of the pathogens' capacity to develop resistance. We provide a brief overview of antifungal compounds in the arthropods’ armoury, proposing a conceptual model to suggest why their use remains so successful. Fundamental concepts embedded within such a model may suggest strategies by which to reduce the rise of antifungal resistance within the clinical milieu.


2012 ◽  
Vol 9 (11) ◽  
pp. 13155-13189
Author(s):  
S. Baram ◽  
Z. Ronen ◽  
D. Kurtzman ◽  
C. Küells ◽  
O. Dahan

Abstract. A study on water infiltration and solute transport in a clayey vadose zone underlying a dairy farm waste source was conducted to assess the impact of desiccation cracks on subsurface evaporation and salinization. The study is based on five years of continuous measurements of the temporal variation in the vadose zone water-content and on the chemical and isotopic composition of the sediment and pore-water in it. The isotopic composition of water stable isotopes (δ18O and δ2H) in water and sediment samples, from the area where desiccation crack networks prevail, indicated subsurface evaporation down to ∼3.5 m below land surface, and vertical and lateral preferential transport of water, following erratic preferential infiltration events. Chloride (Cl-) concentrations in the vadose zone pore water substantially increased with depth, evidence of deep subsurface evaporation and down flushing of concentrated solutions from the evaporation zones during preferential infiltration events. These observations led to development of a Desiccation-Crack-Induced Salinization (DCIS) conceptual model. DCIS suggests that thermally driven convective air flow in the desiccation cracks induces evaporation and salinization in relatively deep sections of the subsurface. This conceptual model supports previous conceptual models on vadose zone and groundwater salinization in fractured rock in arid environments and extends its validity to clayey soils in semi-arid environments.


2002 ◽  
Vol 36 (18) ◽  
pp. 4455-4470 ◽  
Author(s):  
Leo L.P van Stee ◽  
Pim E.G Leonards ◽  
Willem M.G.M van Loon ◽  
A Jan Hendriks ◽  
Johanna L Maas ◽  
...  

1989 ◽  
Vol 167 ◽  
Author(s):  
M. S. Hu

AbstractSolvent induced damage bands formed in residually strained polyimide thin films on different substrates have been studied. Microscopy studies have shown that these bands resemble crazes. A mechanics approach Is taken to understand the band formation phenomenon.The critical strain for damage formation has been identified. This strain decreases with increase in exposure time, but always exhibits a threshold value. In contrast to the cracking of brittle films, the critical strain has only a weak dependence on the film thickness over a wide range. This behavior obtains because the crazing of the polyimide films is nucleation controlled. Strain-enhanced diffusion of solvent into the films is considered to be responsible for the property degradation that leads to damage formation.


Sign in / Sign up

Export Citation Format

Share Document