Inhibitor development in patients with type 3 Von Willebrand disease, a comprehensive study on 99 Iranian patients

Haemophilia ◽  
2021 ◽  
Author(s):  
Mohammad Jazebi ◽  
Mohammad Reza Baghaipour ◽  
Gholam Reza Bahoush ◽  
Fereydoun Ala ◽  
Akbar Dorgalaleh ◽  
...  
Haemophilia ◽  
2009 ◽  
Vol 15 (5) ◽  
pp. 1058-1064 ◽  
Author(s):  
S. SHAHBAZI ◽  
R. MAHDIAN ◽  
F. A. ALA ◽  
J.-M. LAVERGNE ◽  
C. V. DENIS ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1184-1184
Author(s):  
Luciano Baronciani ◽  
Flora Peyvandi ◽  
Anne Goodeve ◽  
Reinhard Schneppenheim ◽  
Zahra Badiee ◽  
...  

Abstract Background: The type 3 Von Willebrand International RegistrieSInhibitor Prospective Study (3WINTERS-IPS) is a no-profit, investigator initiated, multicenter, European-Iranian observational, retrospective and prospective study on patients with diagnosis of type 3 VWD. Patients with type 3 von Willebrand Disease (VWD3) have markedly reduced levels of von Willebrand factor (VWF) and very severe bleeding phenotype. Due to the recessive inheritance pattern, VWD3 is by definition a rare bleeding disorder (1:Million) but its prevalence may increase in countries like Iran with consanguineous marriages. Aim: To identify the VWF genetic defects in a cohort of European and Iranian patients with previously diagnosed VWD3 enrolled into the 3WINTERS-IPS project. Methods: Patients classified locally as VWD3 were enrolled in the study following informed consent. 141 patients were from 9 different European countries and 119 patients were from the Islamic Republic of Iran. Plasma/buffy-coat samples were sent to expert labs to confirm patient's laboratory phenotype and to perform molecular analysis. PCR and Sanger sequencing/ next generation sequencing and multiplex-ligation dependent probe amplification were used in Hamburg, Sheffield and Milan to confirm previously identified variants or to seek previously unidentified variants. Results: DNA samples from 122 patients from Europe and 114 patients from Iran were analyzed at the molecular level. Of the 236 VWD3 patients under evaluation 24 are still in progress. Of the 212 fully evaluated patients 139 were homozygous (EU/IR=46/93) and 43 were compound heterozygous (EU/IR=36/7). In the remaining 30 patients no variants were identified in 19 samples (EU/IR=6/13) and only one variant was found in the remaining 11 cases (EU/IR=10/1). 135 (EU/IR=82/53) different gene defects were identified among the 375 (EU/IR=174/201) alleles found in this study. Of these 135 variants identified 51(EU/IR=22/29) were not reported on the www.ensembl.org database. The distribution of the different type of variants identified in the two populations is shown in the Figure. The two charts are showing quite similar percentages of the variants identified, with a main exception for the Small deletions and Small insertions. Only five variants are shared among the two populations. Three of these are the "hotspot" variants at the Arg codon, p.Arg1659* (EU/IR=9/8), p.Arg1853* (EU/IR=2/3) and p.Arg2535* (EU/IR=1/2). However, a missense variant , p.Cys275Ser (EU/IR=1/2) and a large deletion, delEx1_Ex5 (EU/IR=1/2) were also found in both populations. Fifteen variants were recurrent and were found in 154 alleles, whereas 49 variants were found only once in the heterozygous state (EU/IR=40/9) and 50 variants were found only twice, mainly in the homozygous state (EU/IR=25/25). Six large deletions were identified (delEx1_Ex3, delEx1_Ex5, delEx14_Ex15, delEx17, delEx35_Ex52 and delEx1_Ex52) and a duplication (dupEx1_Ex28), nevertheless 52 alleles with missense variants were identified (EU/IR=20/32). Discussion: As expected, the majority of the Iranian patients were found to be homozygous (Homozygous/Compound Heterozygous=93/7) reflecting a high rate of consanguinity, nevertheless half of the European patients were found to be homozygous (Homozygous/Compound Heterozygous=46/36). The European populations demonstrated a higher heterogeneity of variants with 82 different variants among the 175 mutated alleles vs 53 different variants among the 201 mutated alleles identified in the Iranian population. Nevertheless, a higher number of previously unreported variants was found in the Iranian population (29) vs the European one (22), probably due to bias of previous investigations performed in European patients. Figure Figure. Disclosures Peyvandi: Ablynx: Other: Member of Advisory Board, Speakers Bureau; Shire: Speakers Bureau; Roche: Speakers Bureau; Grifols: Speakers Bureau; Grifols: Speakers Bureau; Novo Nordisk: Speakers Bureau; Sobi: Speakers Bureau; Sobi: Speakers Bureau; Novo Nordisk: Speakers Bureau; Kedrion: Consultancy; Novo Nordisk: Speakers Bureau; Octapharma US: Honoraria; Novo Nordisk: Speakers Bureau; Sobi: Speakers Bureau; Ablynx: Other: Member of Advisory Board, Speakers Bureau; Kedrion: Consultancy; Novo Nordisk: Speakers Bureau; Kedrion: Consultancy; Ablynx: Other: Member of Advisory Board, Speakers Bureau; Octapharma US: Honoraria; Shire: Speakers Bureau; Roche: Speakers Bureau; Kedrion: Consultancy; Kedrion: Consultancy; Ablynx: Other: Member of Advisory Board, Speakers Bureau; Octapharma US: Honoraria; Octapharma US: Honoraria; Sobi: Speakers Bureau; Roche: Speakers Bureau; Octapharma US: Honoraria; Shire: Speakers Bureau; Sobi: Speakers Bureau; Roche: Speakers Bureau; Roche: Speakers Bureau; Shire: Speakers Bureau; Ablynx: Other: Member of Advisory Board, Speakers Bureau; Grifols: Speakers Bureau; Grifols: Speakers Bureau; Grifols: Speakers Bureau; Shire: Speakers Bureau. Schneppenheim:CSL Behring: Consultancy; SHIRE: Consultancy. Berntorp:Octapharma: Consultancy; CSL Behring: Consultancy; Shire: Consultancy, Other: honoraria for lecturing . Eikenboom:CSL: Research Funding. Mannucci:Bayer: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Kedrion: Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Grifols: Speakers Bureau; Alexion: Speakers Bureau; Baxalta/Shire: Speakers Bureau; Novo Nordisk: Speakers Bureau. Mazzucconi:Baxalta-Shire: Consultancy, Speakers Bureau; Bayer: Consultancy, Speakers Bureau; Novartis,: Consultancy, Speakers Bureau; Amgen: Consultancy, Speakers Bureau; Novo Nordisk: Consultancy, Speakers Bureau; CSL Behring: Consultancy, Speakers Bureau. Oldenburg:Swedish Orphan Biovitrum: Honoraria, Membership on an entity's Board of Directors or advisory committees, Speakers Bureau; Shire: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Roche: Honoraria, Membership on an entity's Board of Directors or advisory committees; Grifols: Honoraria, Membership on an entity's Board of Directors or advisory committees; Biogen Idec: Honoraria, Membership on an entity's Board of Directors or advisory committees; Chugai: Honoraria, Membership on an entity's Board of Directors or advisory committees; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees; Biotest: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; CSL Behring: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novo Nordisk: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Octapharma: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Bayer: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding.


Blood ◽  
2001 ◽  
Vol 98 (1) ◽  
pp. 248-250 ◽  
Author(s):  
Gurcharan K. Surdhar ◽  
Mohammad S. Enayat ◽  
Sarah Lawson ◽  
Michael D. Williams ◽  
Frank G. H. Hill

2021 ◽  
Vol 5 (15) ◽  
pp. 2987-3001
Author(s):  
Luciano Baronciani ◽  
Ian Peake ◽  
Reinhard Schneppenheim ◽  
Anne Goodeve ◽  
Minoo Ahmadinejad ◽  
...  

Abstract Type 3 von Willebrand disease (VWD3) is a rare and severe bleeding disorder characterized by often undetectable von Willebrand factor (VWF) plasma levels, a recessive inheritance pattern, and heterogeneous genotype. The objective of this study was to identify the VWF defects in 265 European and Iranian patients with VWD3 enrolled in 3WINTERS-IPS (Type 3 Von Willebrand International Registries Inhibitor Prospective Study). All analyses were performed in centralized laboratories. The VWF genotype was studied in 231 patients with available DNA (121 [115 families] from Europe [EU], and 110 [91 families] from Iran [IR]). Among 206 unrelated patients, 134 were homozygous (EU/IR = 57/77) and 50 were compound heterozygous (EU/IR = 43/7) for VWF variants. In 22 patients, no or only one variant was found. A total of 154 different VWF variants (EU/IR = 101/58 [5 shared]) were identified among the 379 affected alleles (EU/IR = 210/169), of which 48 (EU/IR = 18/30) were novel. The variants p.Arg1659*, p.Arg1853*, p.Arg2535*, p.Cys275Ser, and delEx1_Ex5 were found in both European and Iranian VWD3 patients. Sixty variants were identified only in a single allele (EU/IR = 50/10), whereas 18 were recurrent (≥3 patients) within 144 affected alleles. Nine large deletions and one large insertion were found. Although most variants predicted null alleles, 21% of patients carried at least 1 missense variant. VWD3 genotype was more heterogeneous in the European population than in the Iranian population, with nearly twice as many different variants. A higher number of novel variants were found in the Iranian VWD3 patients.


1996 ◽  
Vol 76 (02) ◽  
pp. 253-257 ◽  
Author(s):  
Takeshi Hagiwara ◽  
Hiroshi Inaba ◽  
Shinichi Yoshida ◽  
Keiko Nagaizumi ◽  
Morio Arai ◽  
...  

SummaryGenetic materials from 16 unrelated Japanese patients with von Willebrand disease (vWD) were analyzed for mutations. Exon 28 of the von Willebrand factor (vWF) gene, where point mutations have been found most frequent, was screened by various restriction-enzyme analyses. Six patients were observed to have abnormal restriction patterns. By sequence analyses of the polymerase chain-reaction products, we identified a homozygous R1308C missense mutation in a patient with type 2B vWD; R1597W, R1597Q, G1609R and G1672R missense mutations in five patients with type 2A; and a G1659ter nonsense mutation in a patient with type 3 vWD. The G1672R was a novel missense mutation of the carboxyl-terminal end of the A2 domain. In addition, we detected an A/C polymorphism at nucleotide 4915 with HaeIII. There was no particular linkage disequilibrium of the A/C polymorphism, either with the G/A polymorphism at nucleotide 4391 detected with Hphl or with the C/T at 4891 detected with BstEll.


1996 ◽  
Vol 76 (03) ◽  
pp. 460-468 ◽  
Author(s):  
Francesco I Pareti ◽  
Marco Cattaneo ◽  
Luca Carpinelli ◽  
Maddalena L Zighetti ◽  
Caterina Bressi ◽  
...  

SummaryWe have evaluated platelet function in different subtypes of von Willebrand disease (vWD) by pushing blood through the capillarysized channels of a glass filter. Patients, including those with type IIB vWD, showed lower than normal platelet retention and increased cumulative number of blood drops passing through the filter as a function of time. In contrast, shear-induced platelet aggregation, measured in the cone-and-plate viscometer, was paradoxically increased in type IIB patients. Treatment with l-desamino-8-D-arginine vasopressin (DDAVP) tended to normalize the filter test in patients with type I-platelet normal and type I-platelet low vWD, but infusion of a factor VUI/von Willebrand factor (vWF) concentrate lacking the largest vWF multimers was without effect in type 3 patients. Experiments with specific monoclonal antibodies demonstrated that the A1 and A3 domains of vWF, as well as the glycoproteins Ibα and Ilb-IIIa on platelets, are required for platelet retention in the filter. Thus, the test may reflect vWF function with regard to both platelet adhesion and aggregation under high shear stress, and provide relevant information on mechanisms involved in primary hemostasis.


2021 ◽  
Vol 47 (02) ◽  
pp. 192-200
Author(s):  
James S. O'Donnell

AbstractThe biological mechanisms involved in the pathogenesis of type 2 and type 3 von Willebrand disease (VWD) have been studied extensively. In contrast, although accounting for the majority of VWD cases, the pathobiology underlying partial quantitative VWD has remained somewhat elusive. However, important insights have been attained following several recent cohort studies that have investigated mechanisms in patients with type 1 VWD and low von Willebrand factor (VWF), respectively. These studies have demonstrated that reduced plasma VWF levels may result from either (1) decreased VWF biosynthesis and/or secretion in endothelial cells and (2) pathological increased VWF clearance. In addition, it has become clear that some patients with only mild to moderate reductions in plasma VWF levels in the 30 to 50 IU/dL range may have significant bleeding phenotypes. Importantly in these low VWF patients, bleeding risk fails to correlate with plasma VWF levels and inheritance is typically independent of the VWF gene. Although plasma VWF levels may increase to > 50 IU/dL with progressive aging or pregnancy in these subjects, emerging data suggest that this apparent normalization in VWF levels does not necessarily equate to a complete correction in bleeding phenotype in patients with partial quantitative VWD. In this review, these recent advances in our understanding of quantitative VWD pathogenesis are discussed. Furthermore, the translational implications of these emerging findings are considered, particularly with respect to designing personalized treatment plans for VWD patients undergoing elective procedures.


Sign in / Sign up

Export Citation Format

Share Document