Importance of general adiposity, visceral adiposity and vital signs in predicting blood biomarkers using machine learning

2020 ◽  
Vol 75 (1) ◽  
Author(s):  
Weihong Zhou ◽  
Yingjie Wang ◽  
Xiaoping Gu ◽  
Zhong‐Ping Feng ◽  
Kang Lee ◽  
...  
2020 ◽  
Author(s):  
Hsiao-Ko Chang ◽  
Hui-Chih Wang ◽  
Chih-Fen Huang ◽  
Feipei Lai

BACKGROUND In most of Taiwan’s medical institutions, congestion is a serious problem for emergency departments. Due to a lack of beds, patients spend more time in emergency retention zones, which make it difficult to detect cardiac arrest (CA). OBJECTIVE We seek to develop a Drug Early Warning System Model (DEWSM), it included drug injections and vital signs as this research important features. We use it to predict cardiac arrest in emergency departments via drug classification and medical expert suggestion. METHODS We propose this new model for detecting cardiac arrest via drug classification and by using a sliding window; we apply learning-based algorithms to time-series data for a DEWSM. By treating drug features as a dynamic time-series factor for cardiopulmonary resuscitation (CPR) patients, we increase sensitivity, reduce false alarm rates and mortality, and increase the model’s accuracy. To evaluate the proposed model, we use the area under the receiver operating characteristic curve (AUROC). RESULTS Four important findings are as follows: (1) We identify the most important drug predictors: bits (intravenous therapy), and replenishers and regulators of water and electrolytes (fluid and electrolyte supplement). The best AUROC of bits is 85%, it means the medical expert suggest the drug features: bits, it will affect the vital signs, and then the evaluate this model correctly classified patients with CPR reach 85%; that of replenishers and regulators of water and electrolytes is 86%. These two features are the most influential of the drug features in the task. (2) We verify feature selection, in which accounting for drugs improve the accuracy: In Task 1, the best AUROC of vital signs is 77%, and that of all features is 86%. In Task 2, the best AUROC of all features is 85%, which demonstrates that thus accounting for the drugs significantly affects prediction. (3) We use a better model: For traditional machine learning, this study adds a new AI technology: the long short-term memory (LSTM) model with the best time-series accuracy, comparable to the traditional random forest (RF) model; the two AUROC measures are 85%. It can be seen that the use of new AI technology will achieve better results, currently comparable to the accuracy of traditional common RF, and the LSTM model can be adjusted in the future to obtain better results. (4) We determine whether the event can be predicted beforehand: The best classifier is still an RF model, in which the observational starting time is 4 hours before the CPR event. Although the accuracy is impaired, the predictive accuracy still reaches 70%. Therefore, we believe that CPR events can be predicted four hours before the event. CONCLUSIONS This paper uses a sliding window to account for dynamic time-series data consisting of the patient’s vital signs and drug injections. The National Early Warning Score (NEWS) only focuses on the score of vital signs, and does not include factors related to drug injections. In this study, the experimental results of adding the drug injections are better than only vital signs. In a comparison with NEWS, we improve predictive accuracy via feature selection, which includes drugs as features. In addition, we use traditional machine learning methods and deep learning (using LSTM method as the main processing time series data) as the basis for comparison of this research. The proposed DEWSM, which offers 4-hour predictions, is better than the NEWS in the literature. This also confirms that the doctor’s heuristic rules are consistent with the results found by machine learning algorithms.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 776
Author(s):  
Xiaohui Tao ◽  
Thanveer Basha Shaik ◽  
Niall Higgins ◽  
Raj Gururajan ◽  
Xujuan Zhou

Remote Patient Monitoring (RPM) has gained great popularity with an aim to measure vital signs and gain patient related information in clinics. RPM can be achieved with noninvasive digital technology without hindering a patient’s daily activities and can enhance the efficiency of healthcare delivery in acute clinical settings. In this study, an RPM system was built using radio frequency identification (RFID) technology for early detection of suicidal behaviour in a hospital-based mental health facility. A range of machine learning models such as Linear Regression, Decision Tree, Random Forest, and XGBoost were investigated to help determine the optimum fixed positions of RFID reader–antennas in a simulated hospital ward. Empirical experiments showed that Decision Tree had the best performance compared to Random Forest and XGBoost models. An Ensemble Learning model was also developed, took advantage of these machine learning models based on their individual performance. The research set a path to analyse dynamic moving RFID tags and builds an RPM system to help retrieve patient vital signs such as heart rate, pulse rate, respiration rate and subtle motions to make this research state-of-the-art in terms of managing acute suicidal and self-harm behaviour in a mental health ward.


2021 ◽  
pp. 100592
Author(s):  
Thanh Han Trong ◽  
Yen Pham Huong ◽  
Lam Nguyen Dang Son ◽  
Yuki Iwata ◽  
Tuan Do Trong ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Elza Rechtman ◽  
Paul Curtin ◽  
Esmeralda Navarro ◽  
Sharon Nirenberg ◽  
Megan K. Horton

AbstractTimely and effective clinical decision-making for COVID-19 requires rapid identification of risk factors for disease outcomes. Our objective was to identify characteristics available immediately upon first clinical evaluation related COVID-19 mortality. We conducted a retrospective study of 8770 laboratory-confirmed cases of SARS-CoV-2 from a network of 53 facilities in New-York City. We analysed 3 classes of variables; demographic, clinical, and comorbid factors, in a two-tiered analysis that included traditional regression strategies and machine learning. COVID-19 mortality was 12.7%. Logistic regression identified older age (OR, 1.69 [95% CI 1.66–1.92]), male sex (OR, 1.57 [95% CI 1.30–1.90]), higher BMI (OR, 1.03 [95% CI 1.102–1.05]), higher heart rate (OR, 1.01 [95% CI 1.00–1.01]), higher respiratory rate (OR, 1.05 [95% CI 1.03–1.07]), lower oxygen saturation (OR, 0.94 [95% CI 0.93–0.96]), and chronic kidney disease (OR, 1.53 [95% CI 1.20–1.95]) were associated with COVID-19 mortality. Using gradient-boosting machine learning, these factors predicted COVID-19 related mortality (AUC = 0.86) following cross-validation in a training set. Immediate, objective and culturally generalizable measures accessible upon clinical presentation are effective predictors of COVID-19 outcome. These findings may inform rapid response strategies to optimize health care delivery in parts of the world who have not yet confronted this epidemic, as well as in those forecasting a possible second outbreak.


2019 ◽  
Vol 85 (7) ◽  
pp. 725-729 ◽  
Author(s):  
Joshua Parreco ◽  
Hahn Soe-Lin ◽  
Jonathan J. Parks ◽  
Saskya Byerly ◽  
Matthew Chatoor ◽  
...  

Prior studies have used vital signs and laboratory measurements with conventional modeling techniques to predict acute kidney injury (AKI). The purpose of this study was to use the trend in vital signs and laboratory measurements with machine learning algorithms for predicting AKI in ICU patients. The eICU Collaborative Research Database was queried for five consecutive days of laboratory measurements per patient. Patients with AKI were identified and trends in vital signs and laboratory values were determined by calculating the slope of the least-squares-fit linear equation using three days for each value. Different machine learning classifiers (gradient boosted trees [GBT], logistic regression, and deep learning) were trained to predict AKI using the laboratory values, vital signs, and slopes. There were 151,098 ICU stays identified and the rate of AKI was 5.6 per cent. The best performing algorithm was GBT with an AUC of 0.834 ± 0.006 and an F-measure of 42.96 per cent ± 1.26 per cent. Logistic regression performed with an AUC of 0.827 ± 0.004 and an F-measure of 28.29 per cent ± 1.01 per cent. Deep learning performed with an AUC of 0.817 ± 0.005 and an F-measure of 42.89 per cent ± 0.91 per cent. The most important variable for GBT was the slope of the minimum creatinine (30.32%). This study identifies the best performing machine learning algorithms for predicting AKI using trends in laboratory values in ICU patients. Early identification of these patients using readily available data indicates that incorporating machine learning predictive models into electronic medical record systems is an inevitable requisite for improving patient outcomes.


2019 ◽  
Vol 109 ◽  
pp. 79-84 ◽  
Author(s):  
Christopher Barton ◽  
Uli Chettipally ◽  
Yifan Zhou ◽  
Zirui Jiang ◽  
Anna Lynn-Palevsky ◽  
...  

2021 ◽  
Author(s):  
Ran Cui ◽  
Elena Daskalaki ◽  
Md Zakir Hossain ◽  
Artem Lenskiy ◽  
Christopher J Nolan ◽  
...  

Diabetes can be diagnosed by either Fasting Plasma Glucose or Hemoglobin A1c. The aim of our study was to explore the differences between the two criteria through the development of a machine learning based diabetes diagnostic algorithm and analysing the predictive contribution of each input biomarker. Our study concludes that fasting insulin is predictive of diabetes defined by FPG, but not by HbA1c. Besides, 28 other fasting blood biomarkers were not significant predictors of diabetes.


2019 ◽  
Vol 78 (5) ◽  
pp. 409-421 ◽  
Author(s):  
Sumiyakhand Dagdanpurev ◽  
Shigeto Abe ◽  
Guanghao Sun ◽  
Hidekazu Nishimura ◽  
Lodoiravsal Choimaa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document