Melanoidin, a Food Protein-Derived Advanced Maillard Reaction Product, SuppressesHelicobacter pyloriin vitro and in vivo

Helicobacter ◽  
2004 ◽  
Vol 9 (5) ◽  
pp. 429-435 ◽  
Author(s):  
Shigeru Hiramoto ◽  
Kazuro Itoh ◽  
Satomi Shizuuchi ◽  
Yasuji Kawachi ◽  
Yoshirou Morishita ◽  
...  
Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 969
Author(s):  
Xingyi Jiang ◽  
Qinchun Rao

Fish allergy is a life-long food allergy whose prevalence is affected by many demographic factors. Currently, there is no cure for fish allergy, which can only be managed by strict avoidance of fish in the diet. According to the WHO/IUIS Allergen Nomenclature Sub-Committee, 12 fish proteins are recognized as allergens. Different processing (thermal and non-thermal) techniques are applied to fish and fishery products to reduce microorganisms, extend shelf life, and alter organoleptic/nutritional properties. In this concise review, the development of a consistent terminology for studying food protein immunogenicity, antigenicity, and allergenicity is proposed. It also summarizes that food processing may lead to a decrease, no change, or even increase in fish antigenicity and allergenicity due to the change of protein solubility, protein denaturation, and the modification of linear or conformational epitopes. Recent studies investigated the effect of processing on fish antigenicity/allergenicity and were mainly conducted on commonly consumed fish species and major fish allergens using in vitro methods. Future research areas such as novel fish species/allergens and ex vivo/in vivo evaluation methods would convey a comprehensive view of the relationship between processing and fish allergy.


2016 ◽  
Vol 82 ◽  
pp. 112-120 ◽  
Author(s):  
Guowan Su ◽  
Tiantian Zhao ◽  
Yaqi Zhao ◽  
Dongxiao Sun-Waterhouse ◽  
Chaoying Qiu ◽  
...  

2021 ◽  
Vol 22 (17) ◽  
pp. 9508
Author(s):  
Nhung Thi Phuong Nong ◽  
Jue-Liang Hsu

Diabetes, a glucose metabolic disorder, is considered one of the biggest challenges associated with a complex complication of health crises in the modern lifestyle. Inhibition or reduction of the dipeptidyl peptidase IV (DPP-IV), alpha-glucosidase, and protein-tyrosine phosphatase 1B (PTP-1B) enzyme activities or expressions are notably considered as the promising therapeutic strategies for the management of type 2 diabetes (T2D). Various food protein-derived antidiabetic bioactive peptides have been isolated and verified. This review provides an overview of the DPP-IV, PTP-1B, and α-glucosidase inhibitors, and updates on the methods for the discovery of DPP-IV inhibitory peptides released from food-protein hydrolysate. The finding of novel bioactive peptides involves studies about the strategy of separation fractionation, the identification of peptide sequences, and the evaluation of peptide characteristics in vitro, in silico, in situ, and in vivo. The potential of bioactive peptides suggests useful applications in the prevention and management of diabetes. Furthermore, evidence of clinical studies is necessary for the validation of these peptides’ efficiencies before commercial applications.


2021 ◽  
Vol 21 (103) ◽  
pp. 18518-18532
Author(s):  
Norah Vhangani Lusani ◽  
◽  
L Mogashoa ◽  
J Van Wyk

The antioxidant and anti-browning activity of heated plant extracts have been attributed to the formation of Maillard reaction products (MRPs) via the Maillard reaction (MR). The inhibitory effect of heated Moringa oleifera (MO) seed extract on banana polyphenol oxidase (PPO) was investigated. The Plain MO seed extracts and those with added glucose and glycine (1.5 mM each) were heated at 100°C for 15, 30, 60 and 120 min. The pH and brown colour development decreased and increased significantly (P <0.05) with increased reaction time, respectively, with heated moringa glucose-glycine HMGGL for 120 min exhibiting the highest pH reduction (2.58) and darkest extracts at an L* value of 8.11. This phenomenon is associated with progression of the MR. With reference to enzymatic browning, heated MO seed extracts exhibited stronger inhibitory effect against banana PPO activity in vivo and in vitro than the unheated counterpart. Evident to this are the higher inhibition percentages and lower ΔE values. Among model systems, the highest in vitro browning inhibition was exhibited mostly by longer heating times of 60 and 120 min. Model system HMGGL 120 min proved to be superior at 96% inhibition, which was comparable to known synthetic commercial antioxidants such as ascorbic acid (AA) at 99%, as well as ethylenediaminetetraacetic acid (EDTA) and citric acid (CA), both at 100% inhibition. In vivo enzymatic browning inhibition followed a similar trend, where the brown pigment (melanin) intensified as shown by an increase in ΔE as the storage time increased from 0.5 to 24 h. The model system UMGGL exhibited highest inhibition of brown melanin (p <0.05). Although it was the best amongst other model systems, it was surpassed by synthetic antioxidants AA, EDTA and CA, which were ranked amongst the top three in inhibiting brown pigment formation in vivo. To further illustrate the effect of MR augmented MO seed extracts on enzyme activity inhibition, UMGGL 60 and 120 at 5 and 24 h storage surpassed the inhibitory effect of AA. At the said storage times, AA lost its inhibitory potential against pigment formation. This was due to oxidation of AA to form dehydroascorbic acid, which lacks inhibitory potential. This study proved that heating MO plant extracts increases their enzymatic browning inhibition potential, furthermore, the inhibitory capacity was heightened when reacted via the MR.


Author(s):  
Mahesha M. Poojary ◽  
Marianne N. Lund

Protein is a major nutrient present in foods along with carbohydrates and lipids. Food proteins undergo a wide range of modifications during food production, processing, and storage. In this review, we discuss two major reactions, oxidation and the Maillard reaction, involved in chemical modifications of food proteins. Protein oxidation in foods is initiated by metal-, enzyme-, or light-induced processes. Food protein oxidation results in the loss of thiol groups and the formation of protein carbonyls and specific oxidation products of cysteine, tyrosine, tryptophan, phenylalanine, and methionine residues, such as disulfides, dityrosine, kynurenine, m-tyrosine, and methionine sulfoxide. The Maillard reaction involves the reaction of nucleophilic amino acid residues with reducing sugars, which yields numerous heterogeneous compounds such as α-dicarbonyls, furans, Strecker aldehydes, advanced glycation end-products, and melanoidins. Both protein oxidation and the Maillard reaction result in the loss of essential amino acids but may positively or negatively impact food structure and flavor. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Sign in / Sign up

Export Citation Format

Share Document