Loss of E-cadherin in mouse gastric epithelial cells induces signet ring-like cells, a possible precursor lesion of diffuse gastric cancer

2011 ◽  
Vol 102 (5) ◽  
pp. 942-950 ◽  
Author(s):  
Ayako Mimata ◽  
Hiroshi Fukamachi ◽  
Yoshinobu Eishi ◽  
Yasuhito Yuasa
2019 ◽  
Vol 56 (4) ◽  
pp. 199-208 ◽  
Author(s):  
Joana Figueiredo ◽  
Soraia Melo ◽  
Patrícia Carneiro ◽  
Ana Margarida Moreira ◽  
Maria Sofia Fernandes ◽  
...  

CDH1 encodes E-cadherin, a key protein in adherens junctions. Given that E-cadherin is involved in major cellular processes such as embryogenesis and maintenance of tissue architecture, it is no surprise that deleterious effects arise from its loss of function. E-cadherin is recognised as a tumour suppressor gene, and it is well established that CDH1 genetic alterations cause diffuse gastric cancer and lobular breast cancer—the foremost manifestations of the hereditary diffuse gastric cancer syndrome. However, in the last decade, evidence has emerged demonstrating that CDH1 mutations can be associated with lobular breast cancer and/or several congenital abnormalities, without any personal or family history of diffuse gastric cancer. To date, no genotype–phenotype correlations have been observed. Remarkably, there are reports of mutations affecting the same nucleotide but inducing distinct clinical outcomes. In this review, we bring together a comprehensive analysis of CDH1-associated disorders and germline alterations found in each trait, providing important insights into the biological mechanisms underlying E-cadherin’s pleiotropic effects. Ultimately, this knowledge will impact genetic counselling and will be relevant to the assessment of risk of cancer development or congenital malformations in CDH1 mutation carriers.


2020 ◽  
pp. 30-33
Author(s):  
Buket KARA ◽  
Ayse KARTAL ◽  
Mehmet ÖZTÜRK ◽  
Yavuz KÖKSAL

Signet ring cell gastric carcinoma is extremely rare during childhood. One of the most important problems in these patients is nutritional difficulty and impairment, and these patients are often supported by total parenteral nutrition. Herein, the authors report a case of Wernicke encephalopathy due to prolonged total parenteral nutrition in a 13-year-old girl with diffuse gastric cancer with signet ring cell.


2011 ◽  
Vol 140 (5) ◽  
pp. S-39
Author(s):  
Hanchen Li ◽  
Calin Stoicov ◽  
Jian Hua Liu ◽  
Jean Marie Houghton

2021 ◽  
Vol 39 (3_suppl) ◽  
pp. 243-243
Author(s):  
Manikandan Palrasu ◽  
Elena Zaika ◽  
El-Rifai Wael ◽  
Richard Peek ◽  
Alexander Zaika

243 Background: Helicobacter pylori ( H. pylori) is the strongest known risk factor for gastric cancer. Bacterial degradation of tumor suppressor proteins affect the host microbe’s interactions and host cellular response, which contribute to tumorigenesis. p14ARF, a crucial tumor suppressor protein that activates p53 protein under oncogenic stress plays a major role in oncogenic stress response (OSR) regulation. However, little is known about the mechanism of ARF and OSR regulation in H. pylori-infected gastric epithelial cells. Methods: The expression of p14ARF and cytotoxin-associated gene A (CagA) were analyzed in gastric cells co-cultured with H. pylori strains isolated from high-gastric risk and low-gastric risk areas by immunoblotting. To investigate the potential role of CagA in regulation of p14ARF, we employed isogenic cagA− and cagE− H. pylori mutants in gastric epithelial cells, and C57BL/6 mice (n = 10). We also analyzed the expression of Siva1 in human individual infected with cagA-positive (n = 13) and cagA-negative (n = 13) bacteria as well as uninfected human subjects (n = 6). siRNA was used to inhibit activity of Siva1 protein. Results: In this study, H. pylori strains expressing high levels of CagA virulence factor and associated with a higher gastric cancer risk more strongly suppress p14ARF compared with low-risk strains in vivo and in vitro. We found that degradation of p14ARF induced by CagA is mediated by E3 ubiquitin ligase Siva1, which works in concert with another E3 ubiquitin ligase TRIP12. Decreased expression of Siva1 protein and consequent up-regulation of p14ARF was also found in gastric mucosa of H. pylori-infected mice and human individuals. Tumorigenic strain 7.13 was more potent in upregulation of Siva1 and downregulation of p14ARF than non-tumorigenic strain B128. Inhibition of p14ARF protein by H. pylori causes inhibition of autophagy in infected cells. Conclusions: Our results provide first evidence that carcinogenic H. pylori strains significantly alter the host tumor suppressor protein p14ARF, leading to suppression of host OSR and autophagy, which may affect host-bacteria interactions and tumorigenic alteration in the stomach.


Author(s):  
Yasuhide Takezono ◽  
Takashi Joh ◽  
Makoto Sasaki ◽  
Hiromi Kataoka ◽  
Kyouji Senou ◽  
...  

2020 ◽  
Vol 21 (14) ◽  
pp. 4904
Author(s):  
Laura Caggiari ◽  
Mara Fornasarig ◽  
Mariangela De Zorzi ◽  
Renato Cannizzaro ◽  
Agostino Steffan ◽  
...  

Hereditary diffuse gastric cancer (HDGC) is a cancer susceptibility syndrome caused by germline pathogenic variant in CDH1, the gene encoding E-cadherin. The germline loss-of-function variants are the only proven cause of the cancer syndrome HDGC, occurring in approximately 10–18% of cases and representing a helpful tool in genetic counseling. The current case reports the family history based on a CDH1 gene variant, c.360delG, p.His121Thr in a suspected family for hereditary gastric cancer form. This frameshift deletion generates a premature stop codon at the amino acid 214, which leads to a truncated E-cadherin protein detecting it as a deleterious variant. The present study expands the mutational spectra of the family with the CDH1 variant. Our results highlight the clinical impact of the reported CDH1 variant running in gastric cancer families.


2004 ◽  
Vol 10 (8) ◽  
pp. 2784-2789 ◽  
Author(s):  
Francesco Graziano ◽  
Federica Arduini ◽  
Annamaria Ruzzo ◽  
Italo Bearzi ◽  
Bostjan Humar ◽  
...  

Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 637 ◽  
Author(s):  
Yongchae Park ◽  
Hanbit Lee ◽  
Joo Weon Lim ◽  
Hyeyoung Kim

Helicobacter pylori infection causes the hyper-proliferation of gastric epithelial cells that leads to the development of gastric cancer. Overexpression of tumor necrosis factor receptor associated factor (TRAF) is shown in gastric cancer cells. The dietary antioxidant β-carotene has been shown to counter hyper-proliferation in H. pylori-infected gastric epithelial cells. The present study was carried out to examine the β-carotene mechanism of action. We first showed that H. pylori infection decreases cellular IκBα levels while increasing cell viability, NADPH oxidase activity, reactive oxygen species production, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation, and TRAF1 and TRAF2 gene expression, as well as protein–protein interaction in gastric epithelial AGS cells. We then demonstrated that pretreatment of cells with β-carotene significantly attenuates these effects. Our findings support the proposal that β-carotene has anti-cancer activity by reducing NADPH oxidase-mediated production of ROS, NF-κB activation and NF-κB-regulated TRAF1 and TRAF2 gene expression, and hyper-proliferation in AGS cells. We suggest that the consumption of β-carotene-enriched foods could decrease the incidence of H. pylori-associated gastric disorders.


Sign in / Sign up

Export Citation Format

Share Document