oncogenic stress
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 23)

H-INDEX

22
(FIVE YEARS 1)

Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 313
Author(s):  
Małgorzata Szczygieł ◽  
Marcin Markiewicz ◽  
Milena Julia Szafraniec ◽  
Agnieszka Hojda ◽  
Leszek Fiedor ◽  
...  

The breast cancer resistance protein (BCRP or ABCG2) involved in cancer multidrug resistance (MDR), transports many hydrophobic compounds, including a number of anti-cancer drugs. Our comprehensive study using a mouse model reveals that a subcutaneously growing tumor strongly affects the expression of BCRP in the host’s normal organs on both the transcriptional and translational level. Additionally, the efflux of BCRP substrates is markedly enhanced. The levels of BCRP and its transcript in normal tissues distant from the tumor site correlate with tumor growth and the levels of cytokines in the peripheral blood. Thus, oncogenic stress causes transient systemic upregulation of BCRP in the host’s normal tissues and organs, which is possibly mediated via cytokines. Because BCRP upregulation takes place in many organs as early as the initial stages of tumor development, it reveals a most basic mechanism that may be responsible for the induction of primary MDR. We hypothesize that such effects are not tumor-specific responses, but rather constitute a more universal defense strategy. The xenobiotic transporters are systemically mobilized due to various stresses, seemingly in a pre-emptive manner so that the body can be quickly and efficiently detoxified. Our findings shed new light on the biology of cancer and on the complexity of cancer–host interactions and are highly relevant to cancer therapies as well as to the design of new generations of therapeutics and personalized medicine.


Biology Open ◽  
2022 ◽  
Author(s):  
Kerry C. Roby ◽  
Allyson Lieberman ◽  
Bang-Jin Kim ◽  
Nicole Zaragoza Rodríguez ◽  
Jessica M. Posimo ◽  
...  

Fibroblasts are quiescent and tumor suppressive in nature but become activated in wound healing and cancer. The response of fibroblasts to cellular stress has not been extensively investigated however the p53 tumor suppressor has been shown to be activated in fibroblasts during nutrient deprivation. Since the p19 Alternative reading frame (p19Arf) tumor suppressor is a key regulator of p53 activation during oncogenic stress, we investigated the role of p19Arf in fibroblasts during nutrient deprivation. Here we show that prolonged leucine deprivation resulted in increased expression and nuclear localization of p19Arf, triggering apoptosis in primary murine adult lung fibroblasts (ALFs). In contrast, the absence of p19Arf during long-term leucine deprivation resulted in increased ALF proliferation, migration and survival through upregulation of the Integrated Stress Response pathway and increased autophagic flux. Our data implicates a new role for p19Arf in response to nutrient deprivation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shintaro Okumura ◽  
Yusuke Konishi ◽  
Megumi Narukawa ◽  
Yuki Sugiura ◽  
Shin Yoshimoto ◽  
...  

AbstractEmerging evidence is revealing that alterations in gut microbiota are associated with colorectal cancer (CRC). However, very little is currently known about whether and how gut microbiota alterations are causally associated with CRC development. Here we show that 12 faecal bacterial taxa are enriched in CRC patients in two independent cohort studies. Among them, 2 Porphyromonas species are capable of inducing cellular senescence, an oncogenic stress response, through the secretion of the bacterial metabolite, butyrate. Notably, the invasion of these bacteria is observed in the CRC tissues, coinciding with the elevation of butyrate levels and signs of senescence-associated inflammatory phenotypes. Moreover, although the administration of these bacteria into ApcΔ14/+ mice accelerate the onset of colorectal tumours, this is not the case when bacterial butyrate-synthesis genes are disrupted. These results suggest a causal relationship between Porphyromonas species overgrowth and colorectal tumourigenesis which may be due to butyrate-induced senescence.


2021 ◽  
Author(s):  
Jingwei Liu ◽  
Tingting Zhou ◽  
xiang dong ◽  
Qiqiang Guo ◽  
Lixia Zheng ◽  
...  

Abstract Oncogenic stress induces DNA damage response (DDR) that guards against genetic instability during the evolution of cancer. SAMHD1, a dNTPase protecting cells from viral infections, has been recently found to participate in DNA damage repair process. However, its role in tumorigenesis remains largely unknown. Here, we show that SAMHD1 is up-regulated in early-stage human carcinoma tissues and cell lines under oxidative stress or genotoxic insults. We further demonstrate that de-ubiquitinating enzyme USP7 interacts with SAMHD1 and de-ubiquitinates it at lysine 421, thus stabilizing SAMHD1 protein expression, and promotes tumor cell survival under genotoxic stress. Furthermore, SAMHD1 levels positively correlates with USP7 in various human carcinomas, and is associated with an unfavorable survival outcome in patients who underwent chemotherapy. Moreover, USP7 inhibitor sensitizes tumor cells to chemotherapeutic agents by decreasing SAMHD1 in vitro and in vivo. These findings suggest that targeting USP7 may help overcome chemoresistance, thus necessitating further investigation in the pursuit of precision medicine.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Siqi Li ◽  
Christopher M Counter

RAS genes are commonly mutated in human cancer. Despite many possible mutations, individual cancer types often have a ‘tropism’ towards a specific subset of RAS mutations. As driver mutations, these patterns ostensibly originate from normal cells. High oncogenic RAS activity causes oncogenic stress and different oncogenic mutations can impart different levels of activity, suggesting a relationship between oncoprotein activity and RAS mutation tropism. Here, we show that changing rare codons to common in the murine Kras gene to increase protein expression shifts tumors induced by the carcinogen urethane from arising from canonical Q61 to biochemically less active G12 Kras driver mutations, despite the carcinogen still being biased towards generating Q61 mutations. Conversely, inactivating the tumor suppressor p53 to blunt oncogenic stress partially reversed this effect, restoring Q61 mutations. One interpretation of these findings is that the RAS mutation tropism of urethane arises from selection in normal cells for specific mutations that impart a narrow window of signaling that promotes proliferation without causing oncogenic stress.


2021 ◽  
Author(s):  
Siqi Li ◽  
Christopher M. Counter

AbstractRAS genes are commonly mutated in cancers yet despite many possible mutations, cancers have a ‘tropism’ towards a specific subset. As driver mutations, these patterns ostensibly originate from normal cells. High oncogenic RAS activity causes oncogenic stress and different oncogenic mutations can impart different levels of activity. Here we show that changing rare codons to common in the murine Kras gene to increase translation shifts tumors induced by the carcinogen urethane from arising from canonical Q61 to biochemically less active G12Kras driver mutations, despite the carcinogen still being biased towards generating Q61 mutations. Loss of p53 to blunt oncogenic stress partially reversed this effect, restoring Q61 mutations. Finally, transcriptional analysis revealed similar signaling amongst tumors driven by different mutations and Kras alleles. These finding suggest that the RAS mutation tropism of urethane is largely product of selection in normal cells for mutations promoting proliferation without causing oncogenic stress.Impact statementThe bias towards specific Kras driver mutations during urethane carcinogenesis appears to arise predominantly from the selection of a narrow window of oncogenic signaling in normal cells.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Eduardo Cararo-Lopes ◽  
Matheus H. Dias ◽  
Marcelo S. da Silva ◽  
Julianna D. Zeidler ◽  
Alexandre T. Vessoni ◽  
...  

AbstractMalignant transformation involves an orchestrated rearrangement of cell cycle regulation mechanisms that must balance autonomic mitogenic impulses and deleterious oncogenic stress. Human papillomavirus (HPV) infection is highly prevalent in populations around the globe, whereas the incidence of cervical cancer is 0.15%. Since HPV infection primes cervical keratinocytes to undergo malignant transformation, we can assume that the balance between transforming mitogenic signals and oncogenic stress is rarely attained. We showed that highly transforming mitogenic signals triggered by HRasG12V activity in E6E7–HPV–keratinocytes generate strong replication and oxidative stresses. These stresses are counteracted by autophagy induction that buffers the rapid increase of ROS that is the main cause of genotoxic stress promoted by the oncoprotein. As a result, autophagy creates a narrow window of opportunity for malignant keratinocytes to emerge. This work shows that autophagy is crucial to allow the transition of E6E7 keratinocytes from an immortalized to a malignant state caused by HRasG12V.


2021 ◽  
Vol 7 (9) ◽  
pp. eabe5518
Author(s):  
Fei Yi ◽  
Ying Zhang ◽  
Zhijun Wang ◽  
Zhuo Wang ◽  
Ziwei Li ◽  
...  

Improper distribution of chromosomes during mitosis can contribute to malignant transformation. Higher eukaryotes have evolved a mitotic catastrophe mechanism for eliminating mitosis-incompetent cells; however, the signaling cascade and its epigenetic regulation are poorly understood. Our analyses of human cancerous tissue revealed that the NAD-dependent deacetylase SIRT2 is up-regulated in early-stage carcinomas of various organs. Mass spectrometry analysis revealed that SIRT2 interacts with and deacetylates the structural maintenance of chromosomes protein 1 (SMC1A), which then promotes SMC1A phosphorylation to properly drive mitosis. We have further demonstrated that inhibition of SIRT2 activity or continuously increasing SMC1A-K579 acetylation causes abnormal chromosome segregation, which, in turn, induces mitotic catastrophe in cancer cells and enhances their vulnerability to chemotherapeutic agents. These findings suggest that regulation of the SIRT2-SMC1A axis through deacetylation-phosphorylation permits escape from mitotic catastrophe, thus allowing early precursor lesions to overcome oncogenic stress.


2021 ◽  
Vol 39 (3_suppl) ◽  
pp. 243-243
Author(s):  
Manikandan Palrasu ◽  
Elena Zaika ◽  
El-Rifai Wael ◽  
Richard Peek ◽  
Alexander Zaika

243 Background: Helicobacter pylori ( H. pylori) is the strongest known risk factor for gastric cancer. Bacterial degradation of tumor suppressor proteins affect the host microbe’s interactions and host cellular response, which contribute to tumorigenesis. p14ARF, a crucial tumor suppressor protein that activates p53 protein under oncogenic stress plays a major role in oncogenic stress response (OSR) regulation. However, little is known about the mechanism of ARF and OSR regulation in H. pylori-infected gastric epithelial cells. Methods: The expression of p14ARF and cytotoxin-associated gene A (CagA) were analyzed in gastric cells co-cultured with H. pylori strains isolated from high-gastric risk and low-gastric risk areas by immunoblotting. To investigate the potential role of CagA in regulation of p14ARF, we employed isogenic cagA− and cagE− H. pylori mutants in gastric epithelial cells, and C57BL/6 mice (n = 10). We also analyzed the expression of Siva1 in human individual infected with cagA-positive (n = 13) and cagA-negative (n = 13) bacteria as well as uninfected human subjects (n = 6). siRNA was used to inhibit activity of Siva1 protein. Results: In this study, H. pylori strains expressing high levels of CagA virulence factor and associated with a higher gastric cancer risk more strongly suppress p14ARF compared with low-risk strains in vivo and in vitro. We found that degradation of p14ARF induced by CagA is mediated by E3 ubiquitin ligase Siva1, which works in concert with another E3 ubiquitin ligase TRIP12. Decreased expression of Siva1 protein and consequent up-regulation of p14ARF was also found in gastric mucosa of H. pylori-infected mice and human individuals. Tumorigenic strain 7.13 was more potent in upregulation of Siva1 and downregulation of p14ARF than non-tumorigenic strain B128. Inhibition of p14ARF protein by H. pylori causes inhibition of autophagy in infected cells. Conclusions: Our results provide first evidence that carcinogenic H. pylori strains significantly alter the host tumor suppressor protein p14ARF, leading to suppression of host OSR and autophagy, which may affect host-bacteria interactions and tumorigenic alteration in the stomach.


Sign in / Sign up

Export Citation Format

Share Document