scholarly journals The adaptor-like protein ROG-1 is required for activation of the Ras-MAP kinase pathway and meiotic cell cycle progression in Caenorhabditis elegans

2007 ◽  
Vol 12 (3) ◽  
pp. 407-420 ◽  
Author(s):  
Yosuke Matsubara ◽  
Ichiro Kawasaki ◽  
Seiichi Urushiyama ◽  
Tomoharu Yasuda ◽  
Masaki Shirakata ◽  
...  
Development ◽  
1995 ◽  
Vol 121 (8) ◽  
pp. 2525-2535 ◽  
Author(s):  
D.L. Church ◽  
K.L. Guan ◽  
E.J. Lambie

In the germline of Caenorhabditis elegans hermaphrodites, meiotic cell cycle progression occurs in spatially restricted regions. Immediately after leaving the distal mitotic region, germ cells enter meiosis and thereafter remain in the pachytene stage of first meiotic prophase for an extended period. At the dorsoventral gonadal flexure, germ cells exit pachytene and subsequently become arrested in diakinesis. We have found that exit from pachytene is dependent on the function of three members of the MAP kinase signaling cascade. One of these genes, mek-2, is a newly identified C. elegans MEK (MAP kinase kinase). The other two genes, mpk-1/sur-1 (MAP kinase) and let-60 ras, were previously identified based on their roles in vulval induction and are shown here to act in combination with mek-2 to permit exit from pachytene. Through genetic mosaic analysis, we demonstrate that the expression of mpk-1/sur-1 is required within the germline to permit exit from pachytene.


10.1038/10100 ◽  
1999 ◽  
Vol 1 (2) ◽  
pp. 127-129 ◽  
Author(s):  
Jochen Scheel ◽  
Jagan Srinivasan ◽  
Ulrike Honnert ◽  
Annemarie Henske ◽  
Teymuras V. Kurzchalia

2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Federico Pelisch ◽  
Remi Sonneville ◽  
Ehsan Pourkarimi ◽  
Ana Agostinho ◽  
J. Julian Blow ◽  
...  

PLoS Genetics ◽  
2016 ◽  
Vol 12 (4) ◽  
pp. e1006010 ◽  
Author(s):  
Serena A. D’Souza ◽  
Luckshi Rajendran ◽  
Rachel Bagg ◽  
Louis Barbier ◽  
Derek M. van Pel ◽  
...  

The proper display of transmembrane receptors on the leading edge of migrating cells and cell extensions is essential for their response to guidance cues. We previously discovered that MADD-4, which is an ADAMTSL secreted by motor neurons in Caenorhabditis elegans, interacts with an UNC-40/EVA-1 co-receptor complex on muscles to attract plasma membrane extensions called muscle arms. In nematodes, the muscle arm termini harbor the post-synaptic elements of the neuromuscular junction. Through a forward genetic screen for mutants with disrupted muscle arm extension, we discovered that a LAMMER kinase, which we call MADD-3, is required for the proper display of the EVA-1 receptor on the muscle’s plasma membrane. Without MADD-3, EVA-1 levels decrease concomitantly with a reduction of the late-endosomal marker RAB-7. Through a genetic suppressor screen, we found that the levels of EVA-1 and RAB-7 can be restored in madd-3 mutants by eliminating the function of a p38 MAP kinase pathway. We also found that EVA-1 and RAB-7 will accumulate in madd-3 mutants upon disrupting CUP-5, which is a mucolipin ortholog required for proper lysosome function. Together, our data suggests that the MADD-3 LAMMER kinase antagonizes the p38-mediated endosomal trafficking of EVA-1 to the lysosome. In this way, MADD-3 ensures that sufficient levels of EVA-1 are present to guide muscle arm extension towards the source of the MADD-4 guidance cue.


2018 ◽  
Vol 37 (24) ◽  
Author(s):  
Qian‐Qian Sha ◽  
Jia‐Li Yu ◽  
Jing‐Xin Guo ◽  
Xing‐Xing Dai ◽  
Jun‐Chao Jiang ◽  
...  

Cell ◽  
1996 ◽  
Vol 87 (3) ◽  
pp. 519-529 ◽  
Author(s):  
Nathalie Lamarche ◽  
Nicolas Tapon ◽  
Lisa Stowers ◽  
Peter D Burbelo ◽  
Pontus Aspenström ◽  
...  

2003 ◽  
Vol 27 (11) ◽  
pp. 999-1007 ◽  
Author(s):  
Donald Lavelle ◽  
Joseph DeSimone ◽  
Maria Hankewych ◽  
Tatiana Kousnetzova ◽  
Yi-Hsiang Chen

Sign in / Sign up

Export Citation Format

Share Document