scholarly journals Body-wave inversion using travel time and amplitude data

1980 ◽  
Vol 63 (1) ◽  
pp. 75-93 ◽  
Author(s):  
A. Jurkevics ◽  
R. Wiggins ◽  
L. Canales
1983 ◽  
Vol 73 (4) ◽  
pp. 1063-1076
Author(s):  
Thorne Lay ◽  
Donald V. Helmberger

abstract Relationships between travel-time and amplitude station anomalies are examined for short- and long-period SH waves and short-period P waves recorded at North American WWSSN and Canadian Seismic Network stations. Data for two azimuths of approach to North America are analyzed. To facilitate intercomparison of the data, the S-wave travel times and amplitudes are measured from the same records, and the amplitude data processing is similar for both P and S waves. Short-period P- and S-wave amplitudes have similar regional variations, being relatively low in the western tectonic region and enhanced in the shield and mid-continental regions. The east coast has intermediate amplitude anomalies and systematic, large azimuthal travel-time variations. There is a general correlation between diminished short-period amplitudes and late S-wave arrival times, and enhanced amplitudes and early arrivals. However, this correlation is not obvious within the eastern and western provinces separately, and the data are consistent with a step-like shift in amplitude level across the Rocky Mountain front. Long-period S waves show no overall correlation between amplitude and travel-time anomalies.


2020 ◽  
Vol 110 (3) ◽  
pp. 1090-1100
Author(s):  
Ronia Andrews ◽  
Kusala Rajendran ◽  
N. Purnachandra Rao

ABSTRACT Oceanic plate seismicity is generally dominated by normal and strike-slip faulting associated with active spreading ridges and transform faults. Fossil structural fabrics inherited from spreading ridges also host earthquakes. The Indian Oceanic plate, considered quite active seismically, has hosted earthquakes both on its active and fossil fault systems. The 4 December 2015 Mw 7.1 normal-faulting earthquake, located ∼700  km south of the southeast Indian ridge in the southern Indian Ocean, is a rarity due to its location away from the ridge, lack of association with any mapped faults and its focal depth close to the 800°C isotherm. We present results of teleseismic body-wave inversion that suggest that the earthquake occurred on a north-northwest–south-southeast-striking normal fault at a depth of 34 km. The rupture propagated at 2.7  km/s with compact slip over an area of 48×48  km2 around the hypocenter. Our analysis of the background tectonics suggests that our chosen fault plane is in the same direction as the mapped normal faults on the eastern flanks of the Kerguelen plateau. We propose that these buried normal faults, possibly the relics of the ancient rifting might have been reactivated, leading to the 2015 midplate earthquake.


1988 ◽  
Vol 78 (5) ◽  
pp. 1707-1724
Author(s):  
Masayuki Kikuchi ◽  
Yoshio Fukao

Abstract The seismic wave energy is evaluated for 35 large earthquakes by inverting far-field long-period P waves into the multiple-shock sequence. The results show that the seismic wave energy thus obtained is systematically less than that inferred from the Gutenberg-Richter's formula with the seismic magnitude. The difference amounts to one order of magnitude. The results also show that the energy-moment ratio is well confined to a narrow range: 10−6 < ES/Mo < 10−5 with the average of ∼5 × 10−6. This average value is exactly one order of magnitude as small as the energy-moment ratio inferred from the Gutenberg-Richter's formula using the moment magnitude. Comparing the energy-moment ratio with Δσo/2μ, where Δσo and μ are the stress drop and the rigidity, we obtain an empirical relation: ES/Mo ∼ 0.1 × Δσ0/2μ. Such a relation can be interpreted in terms of a subsonic rupture where the energy loss due to cohesion is not negligible to the seismic wave energy.


2020 ◽  
Vol 10 (2) ◽  
pp. 114
Author(s):  
Ramadhan Priadi ◽  
Dede Yunus ◽  
Berlian Yonanda ◽  
Relly Margiono

On July 17, 2006 an earthquake with a magnitude of  7.7 triggered a tsunami that struck 500 km of the coast in the south of the island of Java. The tsunami generated is classified as an earthquake tsunami because the waves generated were quite large compared to the strength of the earthquake. The difference in the strength of the earthquake and the resulting tsunami requires a tsunami modeling study with an estimated fault area in addition to using aftershock and scaling law. The purpose of this study is to validate tsunamis that occur based on the estimation of the source mechanism and the area of earthquake faults. Determination of earthquake source mechanism parameters using the Teleseismic Body-Wave Inversion method that uses teleseismic waveforms with the distance recorded waveform from the source between  Whereas, tsunami modeling is carried out using the Community Model Interface for Tsunami (commit) method. Fault plane parameters that obtained were strike , dip , and rake  with dominant slip pointing up to north-north-west with a maximum value of 1.7 m. The fault plane is estimated to have a length of 280 km in the strike direction and a width of 102 km in the dip direction. From the results of the tsunami modeling, the maximum inundation area is 0.32 km2 in residential areas flanked by Pangandaran bays and the maximum run-up of 380.96 cm in Pasir Putih beach area. The tsunami modeling results in much smaller inundation and run-up from field observations, it was assumed that the fault plane segmentation had occurred due to the greater energy released than the one from the fault area, causing waves much larger than the modeling results.


1970 ◽  
Vol 60 (2) ◽  
pp. 639-646 ◽  
Author(s):  
Umesh Chandra

abstract The seismograms of the deep focus Peru-Bolivia border earthquake of August 15, 1963 reveal the presence of a number of conspicuous phases occurring within 15 seconds of the first P onset. These phases cannot be explained on the basis of known travel-time curves. Accordingly, the earthquake is interpreted to have occurred in a series of jerks during the course of fault propagation, or in other words it is composed of multiple events. Only one of these events, following the first event, at which the amplitude of the recorded motion becomes suddenly very large, has been located in this study. The focal mechanism solution of this earthquake has been determined from the P wave first motion and amplitude data. Consideration of the direction of rupture propagation determined from the multiple event analysis makes it possible to identify the fault plane in the mechanism solution. The parameters of the fault plane, length and speed of rupture between the two events have been determined.


1992 ◽  
Vol 82 (2) ◽  
pp. 819-835
Author(s):  
Keiko Kuge

Abstract There exists a systematic difference in the ISC body-wave magnitude (mbISC) - seismic moment (M0) relationship between intermediate and deep earthquakes around Japan. For earthquakes with the same M0, the mbISC for intermediate events is larger than that for deep events by 0.2 to 0.3 units. The mbISC discrepancy is attributed to the depth-distance correction in the procedure for determining the mbISC; a larger depth-distance correction (≈ 0.2) is made for the intermediate events than the deep events, irrespective of station distance. The discrepancy disappears if no depth-distance correction is made. I observe no depth-dependent relationship between the M0 and the JMA magnitudes (MJMA), which make a different depth-distance correction. No significant depth-dependent mbISC discrepancy appears in other regions; for example, around Tonga, I observe larger ISC P-wave amplitudes from deep events than intermediate events, which could cancel the effect of the depth-distance correction. The depth-dependent mbISC - M0 relationship around Japan is observed irrespective of whether the magnitudes are determined using the amplitude data at far or near stations, or whether stations are used in the dipping direction of the slab or not. The mbISC discrepancy for the same M0 cannot arise from local structures, radiation patterns, and station coverages. This is not attributable to the dataset of the M0 itself because no significant depth-dependent relationship between M0 and MJMA is observed.


1976 ◽  
Vol 66 (5) ◽  
pp. 1485-1499 ◽  
Author(s):  
L. J. Burdick ◽  
George R. Mellman

abstract The generalized linear inverse technique has been adapted to the problem of determining an earthquake source model from body-wave data. The technique has been successfully applied to the Borrego Mountain earthquake of April 9, 1968. Synthetic seismograms computed from the resulting model match in close detail the first 25 sec of long-period seismograms from a wide range of azimuths. The main shock source-time function has been determined by a new simultaneous short period-long period deconvolution technique as well as by the inversion technique. The duration and shape of this time function indicate that most of the body-wave energy was radiated from a surface with effective radius of only 8 km. This is much smaller than the total surface rupture length or the length of the aftershock zone. Along with the moment determination of Mo = 11.2 ×1025 dyne-cm, this radius implies a high stress drop of about 96 bars. Evidence in the amplitude data indicates that the polarization angle of shear waves is very sensitive to lateral structure.


Sign in / Sign up

Export Citation Format

Share Document