scholarly journals Activation of p38 mitogen-activated protein kinase is critical step for acquisition of effector function in cytokine-activated T cells, but acts as a negative regulator in T cells activated through the T-cell receptor

Immunology ◽  
2010 ◽  
Vol 132 (1) ◽  
pp. 104-110 ◽  
Author(s):  
Ching Li ◽  
Paul Beavis ◽  
Andrew C. Palfreeman ◽  
Parisa Amjadi ◽  
Alan Kennedy ◽  
...  
Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 585
Author(s):  
Jianxin Huo ◽  
Shengli Xu ◽  
Kong-Peng Lam

Apoptosis signal-regulating kinase 1 (ASK1) is a mitogen-activated protein kinase kinase kinase (MAPKKK) that activates downstream JNK and p38 mitogen-activated protein kinase (MAPK) to relay death signals into cells in response to various environmental stress. However, whether ASK1 plays a role in T cell receptor (TCR)-mediated apoptosis of thymocytes is unclear. Here, we show that ASK1 is activated upon TCR stimulation and plays an important role in TCR-mediated apoptosis of thymocytes by triggering downstream JNK and p38 signaling cascades. Mechanistically, ASK1-JNK/p38 signaling leads to the upregulation of neuron-derived clone 77 (Nur77), a critical pro-apoptotic protein involved in TCR-mediated apoptosis of thymocytes. Furthermore, we demonstrate that the activation of ASK1 is negatively modulated by Akt upon TCR stimulation. Thus, our results identify a previously unappreciated signaling mechanism involving ASK1 in TCR-mediated apoptosis of thymocytes.


1998 ◽  
Vol 187 (9) ◽  
pp. 1417-1426 ◽  
Author(s):  
Julie A. Frearson ◽  
Denis R. Alexander

Src homology 2 (SH2) domain–containing phosphotyrosine phosphatases (SHPs) are increasingly being shown to play critical roles in protein tyrosine kinase–mediated signaling pathways. The role of SHP-1 as a negative regulator of T cell receptor (TCR) signaling has been established. To further explore the function of the other member of this family, SHP-2, in TCR-mediated events, a catalytically inactive mutant SHP-2 was expressed under an inducible promoter in Jurkat T cells. Expression of the mutant phosphatase significantly inhibited TCR-induced activation of the extracellular-regulated kinase (ERK)-2 member of the mitogen-activated protein kinase (MAPK) family, but had no effect on TCR-ζ chain tyrosine phosphorylation or TCR-elicited Ca2+ transients. Inactive SHP-2 was targeted to membranes resulting in the selective increase in tyrosine phosphorylation of three membrane-associated candidate SHP-2 substrates of 110 kD, 55-60 kD, and 36 kD, respectively. Analysis of immunoprecipitates containing inactive SHP-2 also indicated that the 110-kD and 36-kD Grb-2–associated proteins were putative substrates for SHP-2. TCR-stimulation of Jurkat T cells expressing wild-type SHP-2 resulted in the formation of a multimeric cytosolic complex composed of SHP-2, Grb-2, phosphatidylinositol (PI) 3′-kinase, and p110. A significant proportion of this complex was shown to be membrane associated, presumably as a result of translocation from the cytosol. Catalytically inactive SHP-2, rather than the wild-type PTPase, was preferentially localized in complex with Grb-2 and the p85 subunit of PI 3′-kinase, suggesting that the dephosphorylating actions of SHP-2 may regulate the association of these signaling molecules to the p110 complex. Our results show that SHP-2 plays a critical role in linking the TCR to the Ras/MAPK pathway in Jurkat T cells, and also provide some insight into the molecular interactions of SHP-2 that form the basis of this signal transduction process.


1999 ◽  
Vol 189 (10) ◽  
pp. 1581-1589 ◽  
Author(s):  
Laura Tonnetti ◽  
Maria-Concetta Verí ◽  
Ezio Bonvini ◽  
Luciano D'Adamio

Studying apoptosis induced by T cell receptor (TCR) cross-linking in the T cell hybridoma, 3DO, we found both neutral sphingomyelinase activation and production of ceramide upon receptor engagement. Pharmacological inhibition of ceramide production by the fungal toxin, fumonisin B1, impaired TCR-induced interleukin (IL)-2 production and programmed cell death. Addition of either exogenous ceramide or bacterial sphingomyelinase reconstituted both responses. Moreover, specific inactivation of neutral sphingomyelinase by antisense RNA inhibited IL-2 production and mitogen-activated protein kinase activation after TCR triggering. These results suggest that ceramide production by activation of neutral sphingomyelinase is an essential component of the TCR signaling machinery.


2006 ◽  
Vol 26 (22) ◽  
pp. 8655-8665 ◽  
Author(s):  
Matthew Lovatt ◽  
Andrew Filby ◽  
Valentino Parravicini ◽  
Guy Werlen ◽  
Ed Palmer ◽  
...  

ABSTRACT The src family kinases p56lck (Lck) and p59fyn (Fyn) are the most proximal signaling molecules to be activated downstream of the T-cell receptor. Using an inducible transgenic model, we can regulate the expression of Lck in primary T cells and ask how the signaling cascade and differentiation potential are affected by the absence or the presence of reduced levels of Lck. We show that in naïve T cells, Lck controls the threshold of activation by preferentially regulating multiple signaling pathways that result in the mobilization of Ca2+ through activation of phospholipase C-gamma and protein kinase C as well as activation of the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway. Fyn is also able to stimulate the ERK/MAPK pathway in primary T cells but has little influence on the mobilization of Ca2+. Only Lck efficiently stimulates production of diacylglycerol and therefore RasGRP1 recruitment to the plasma membrane and phosphorylation of Shc, suggesting that Fyn activates ERK via a different upstream signaling route. Finally, we show that signals through Lck are essential for the development of T-cell-effector potential, particularly for effective cytokine transcription.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5374
Author(s):  
Hyun-Su Lee ◽  
Jae Sik Yu ◽  
Ki Hyun Kim ◽  
Gil-Saeng Jeong

In immunological responses, controlling excessive T cell activity is critical for immunological homeostasis maintenance. Diketoacetonylphenalenone, derived from Hawaiian volcanic soil-associated fungus Penicillium herquei FT729, possesses moderate anti-inflammatory activity in RAW 264.7 cells but its immunosuppressive effect on T cell activation is unknown. In the present study, diketoacetonylphenalenone (up to 40 μM) did not show cytotoxicity in T cells. Western blot analysis showed treatment with diketoacetonylphenalenone did not alter the expression of anti-apoptotic proteins. Pretreatment with diketoacetonylphenalenone suppressed the interleukin-2 production in activated T cells induced by T cell receptor-mediated stimulation and PMA/A23187. The CFSE-proliferation assay revealed the inhibitory effect of diketoacetonylphenalenone on the proliferation of T cells. The expression of surface molecules on activated T cells was also reduced. We discovered the suppression of the TAK1-IKKα-NF-κB pathway by pretreatment with diketoacetonylphenalenone abrogated mitogen-activated protein kinase (MAPK) signaling in activated T cells. These results suggest that diketoacetonylphenalenone effectively downregulates T cell activity via the MAPK pathway and provides insight into the therapeutic potential of immunosuppressive reagents.


2006 ◽  
Vol 26 (16) ◽  
pp. 6005-6015 ◽  
Author(s):  
Claire E. Perchonock ◽  
Melissa C. Fernando ◽  
William J. Quinn ◽  
Chau T. Nguyen ◽  
Jing Sun ◽  
...  

ABSTRACT Activation of naïve T cells requires synergistic signals produced by the T-cell receptor (TCR) and by CD28. We previously identified the novel adaptor ALX, which, upon overexpression in Jurkat T cells, inhibited activation of the interleukin-2 (IL-2) promoter by TCR/CD28, suggesting that it is a negative regulator of T-cell activation. To further understand the physiological role of ALX, ALX-deficient mice were generated. Purified T cells from ALX-deficient mice demonstrated increased IL-2 production, CD25 expression, and proliferation in response to TCR/CD28 stimulation. Enhanced IL-2 production and proliferation were also observed when ALX-deficient mice were primed in vivo with ovalbumin-complete Freund's adjuvant and then restimulated ex vivo. Consistent with our initial overexpression studies, these data demonstrate that ALX is a negative regulator of T-cell activation. While TCR/CD28-mediated activations of phosphotyrosine induction, extracellular signal-regulated kinase 1/2, Jun N-terminal protein kinase, IκB kinase α/β, and Akt were unaltered, constitutive activation of p38 mitogen-activated protein kinase and its upstream regulators MKK3/6 were observed for ALX-deficient splenocytes. The phenotype of ALX-deficient mice resembled the phenotype of those deficient in the transmembrane adaptor LAX, and an association between ALX and LAX proteins was demonstrated. These results suggest that ALX, in association with LAX, negatively regulates T-cell activation through inhibition of p38.


Sign in / Sign up

Export Citation Format

Share Document