Hydrolysis of β-casein (193-209) Fragment by Whole Cells and Fractions of Lactobacillus casei and Lactococcus lactis

1999 ◽  
Vol 64 (5) ◽  
pp. 899-902 ◽  
Author(s):  
L. Parra ◽  
P. Fernandez Palencia ◽  
V. Casal ◽  
T. Requena ◽  
C. Pelaez
1985 ◽  
Vol 21-21 (1-2) ◽  
pp. 103-107 ◽  
Author(s):  
M. Decleire ◽  
N. van Huyhn ◽  
J. C. Motte
Keyword(s):  

1999 ◽  
Vol 65 (8) ◽  
pp. 3540-3546 ◽  
Author(s):  
Silvina Fadda ◽  
Yolanda Sanz ◽  
Graciela Vignolo ◽  
M.-Concepción Aristoy ◽  
Guillermo Oliver ◽  
...  

ABSTRACT Strains of Lactobacillus plantarum originally isolated from sausages were screened for proteinase and aminopeptidase activities toward synthetic substrates; on the basis of that screening,L. plantarum CRL 681 was selected for further assays on muscle proteins. The activities of whole cells, cell extracts (CE), and a combination of both on sarcoplasmic and myofibrillar protein extracts were determined by protein, peptide, and free-amino-acid analyses. Proteinase from whole cells initiated the hydrolysis of sarcoplasmic proteins. The addition of CE intensified the proteolysis. Whole cells generated hydrophilic peptides from both sarcoplasmic and myofibrillar proteins. Other peptides of a hydrophobic nature resulted from the combination of whole cells and CE. The action of both enzymatic sources on myofibrillar proteins caused maximal increases in lysine, arginine, and leucine, while the action of those on sarcoplasmic proteins mainly released alanine. In general, pronounced hydrolysis of muscle proteins required enzyme activities from whole cells in addition to those supplied by CE.


1977 ◽  
Vol 44 (2) ◽  
pp. 309-317 ◽  
Author(s):  
B. A. Law

SummaryOf 8 strains ofStreptococcus cremoristested, 5 grew almost as well in defined media in which various essential amino acids were supplied in dipeptides as they did in media containing the equivalent free amino acids. The remainder grew poorly or not at all in the peptide-containing media. Growth of peptide-utilizing strains was inhibited by also including structurally-related dipeptides in the medium, presumably due to competition for uptake by transport system carriers. Both types of starters produced cell-free dipeptidases recoverable from the medium of exponential phase cultures. Addition of the partly-purified extracellular dipeptidases to dipeptidecontaining test media initiated growth in strains unable to use peptides.Str. lactisgrew in defined peptide media, but the further addition of structurally-related dipeptides did not inhibit growth, either bcause each dipeptide was transported by a specific carrier or because peptides were hydrolysed extracellularly. The presence of cell-bound extracellular dipeptidase was indicated by the hydrolysis of dipeptides with washed whole cells in buffer. This was not observed withStr. cremorisstrains.


1991 ◽  
Vol 58 (1) ◽  
pp. 137-145 ◽  
Author(s):  
Teresa Requena ◽  
Carmen Peláez ◽  
Michel J. Desmazeaud

SummarySeveral strains ofLactococcus lactissubsp.lactis, Lactobacillus caseiandLactobacillus plantarumisolated from traditional goats' cheese have been studied for titratable acidity, proteolysis in milk and enzymic activities. Aminopeptidasc activities were measured with whole cells and cells permeabilized with Triton X-100. Caseinolytic activity was investigated using electrophoresis in polyacrylamide gel with sodium dodecyl sulphate.Lc. lactissubsp.lactishad a level of proteolytic activity in skim milk greater than that ofLb. casei, while this activity inLb. plantarumwas very low. Alanine aminopeptidase activity was almost non-existent for all strains tested, while lysine aminopeptidase activity appeared to be of fundamentally intracellular origin. Leucine aminopeptidase activity was also greater in cells that had been permeabilized than in whole cells forLb. caseiandLb. plantarum. Lc. lactissubsp.lactisleucine aminopeptidase activity was greater in whole cells. No significant hydrolysis of casein was found withLb. caseiI FPL 725 andLb. plantarumIFPL 722 permeabilized with Triton X-100 after 24 h incubation with whole bovine casein.


2012 ◽  
Vol 47 (1) ◽  
pp. 83-93 ◽  
Author(s):  
Rafael Muñoz-Tamayo ◽  
Jolan de Groot ◽  
Peter A. Wierenga ◽  
Harry Gruppen ◽  
Marcel H. Zwietering ◽  
...  

Author(s):  
Maria Tereza Pereira ◽  
Elsa Helena Walter de Santana ◽  
Joice Sifuentes dos Santos

Produtos lácteos fermentados contêm bactérias ácido lácticas (BAL), naturalmente presentes ou adicionadas na matriz láctea como culturas iniciadoras (starters), contribuindo com aroma, textura, valor nutricional e segurança microbiológica. Lactobacillus spp., Streptococcus spp., Lactococcus spp. e Leuconostoc spp. são utilizados como culturas starters em laticínios. As BAL podem ser classificadas em mesofílicas (ex Lactococcus lactis) e termofílicas (ex Streptococcus thermophilus), e de acordo com seus metabólitos de fermentação em homofermentativas (ácido lático) e heterofermentativas (ácido lático, dióxido de carbono, diacetil e outros compostos flavorizantes). Entre as BAL há um grupo de bactérias lácticas que não fazem parte da cultura láctica (non starter lactic acid bacteria - NSLAB), que são oriundas do leite cru, do ambiente de ordenha ou da indústria formando biofilmes. As NSLAB são representadas por espécies heterofermentativas de lactobacilos mesofílicos como Lactobacillus casei spp., L. paracasei spp., L. rhamnosus spp. e L. plantarum spp., e ainda por Pediococcus spp., Leuconostoc spp. e Micrococcus spp. NSLAB termoduricas como Bacillus spp. também são relatadas. As NSLAB em queijos podem ajudar a desenvolver sabor e aroma, porém também são associadas aos defeitos em queijos e leites fermentados. Problemas como odores estranhos, sabor amargo ou muito ácido, perda de viscosidade, perda de coloração, estufamento e formação de gás são associados com a presença e contaminação por NSLAB. Assim, as BAL são importantes micro-organismos na indústria láctea, garantindo sabores e aromas aos derivados. Já a presença de NSLAB podem ser associados com defeitos em queijos e leites fermentados, sendo um problema na indústria beneficiadora.   Palavras-chave: Característica Sensorial. Leites Fermentados. Queijo. Textura.                       Abstract Fermented dairy products contain acid bacteria (BAL) naturally present or added to the dairy matrix as starter cultures (starters), contributing to aroma, texture, nutritional value and microbiological safety. Lactobacillus spp., Streptococcus spp., Lactococcus spp. and Leuconostoc spp. are used as starter dairy crops. As BAL it can be classified as mesophilic (ex: Lactococcus lactis) and thermophilic (ex: Streptococcus thermophilus), and agree with its fermentation metabolites in homofermentative (lactic acid) and heterofermentative (lactic acid, carbon dioxide, diacetyl and other flavorings). Among the BAL, there is a group of lactic bacteria that are not part of the dairy culture (non-initiating lactic acid bacteria - NSLAB) that originate from raw milk, the milking environment or the biofilm-forming industry. NSLAB is represented by heterofermentative species of mesophilic lactobacilli such as Lactobacillus casei spp., L. paracasei spp., L. rhamnosus spp. and L. plantarum spp., and also by Pediococcus spp., Leuconostoc spp. and Micrococcus spp. Termoduric NSLAB such as Bacillus spp. are also related. NSLAB in cheeses may help develop flavor and aroma, and they are also associated with defects in fermented cheeses and milks. Problems such as strange odors, bitter or very acidic taste, loss of viscosity, loss of color, establishment and gas training are associated with the presence and contamination by NSLAB. Thus,  BALs are important microorganisms in the dairy industry, contributing to the dairy flavors and aromas. The presence of NSLAB, on the other hand, can be associated with defects in fermented milk and cheese, being a problem in the processing industry.   Keywords: Cheese. Fermented Milk. Sensory Characteristic. Texture.


1999 ◽  
Vol 181 (15) ◽  
pp. 4592-4597 ◽  
Author(s):  
Jeffrey A. Pederson ◽  
Gerald J. Mileski ◽  
Bart C. Weimer ◽  
James L. Steele

ABSTRACT A cell envelope-associated proteinase gene (prtH) was identified in Lactobacillus helveticus CNRZ32. TheprtH gene encodes a protein of 1,849 amino acids and with a predicted molecular mass of 204 kDa. The deduced amino acid sequence of the prtH product has significant identity (45%) to that of the lactococcal PrtP proteinases. Southern blot analysis indicates thatprtH is not broadly distributed within L. helveticus. A prtH deletion mutant of CNRZ32 was constructed to evaluate the physiological role of PrtH. PrtH is not required for rapid growth or fast acid production in milk by CNRZ32. Cell surface proteinase activity and specificity were determined by hydrolysis of αs1-casein fragment 1-23 by whole cells. A comparison of CNRZ32 and its prtH deletion mutant indicates that CNRZ32 has at least two cell surface proteinases that differ in substrate specificity.


Sign in / Sign up

Export Citation Format

Share Document