scholarly journals Using X-ray observations to explore the binary interaction in Eta Carinae

2009 ◽  
Vol 397 (3) ◽  
pp. 1426-1434 ◽  
Author(s):  
Amit Kashi ◽  
Noam Soker
Keyword(s):  
X Ray ◽  
1981 ◽  
Vol 93 ◽  
pp. 155-175 ◽  
Author(s):  
E.P.J. van den Heuvel

The various ways in which compact objects (neutron stars and black holes) can be formed in interacting binary systems are qualitatively outlined on the basis of the three major modes of binary interaction identified by Webbink (1980). Massive interacting binary systems (M1 ≳ 10–12 M⊙) are, after the first phase of mass transfer expected to leave as remnants:(i) compact stars in massive binary systems (mass ≳ 10 M⊙) with a wide range of orbital periods, as remnants of quasi-conservative mass transfer; these systems later evolve into massive X-ray binaries.(ii) short-period compact star binaries (P ~ 1–2 days) in which the companion may be more massive or less massive than the compact object; these systems have high runaway velocities (≳ 100 km/sec) and start out with highly eccentric orbits, which are rapidly circularized by tidal forces; they may later evolve into low-mass X-ray binaries;(iii) single runaway compact objects with space velocities of ~ 102 to 4.102 km/sec; these are expected to be the most numerous compact remnants.Compact star binaries may also form from Cataclysmic binaries or wide binaries in which an O-Ne-Mg white dwarf is driven over the Chandrasekhar limit by accretion.


2019 ◽  
Vol 627 ◽  
pp. A151 ◽  
Author(s):  
T. Shenar ◽  
D. P. Sablowski ◽  
R. Hainich ◽  
H. Todt ◽  
A. F. J. Moffat ◽  
...  

Context. Massive Wolf–Rayet (WR) stars dominate the radiative and mechanical energy budget of galaxies and probe a critical phase in the evolution of massive stars prior to core collapse. It is not known whether core He-burning WR stars (classical WR; cWR) form predominantly through wind stripping (w-WR) or binary stripping (b-WR). Whereas spectroscopy of WR binaries has so-far largely been avoided because of its complexity, our study focuses on the 44 WR binaries and binary candidates of the Large Magellanic Cloud (LMC; metallicity Z ≈ 0.5 Z⊙), which were identified on the basis of radial velocity variations, composite spectra, or high X-ray luminosities. Aims. Relying on a diverse spectroscopic database, we aim to derive the physical and orbital parameters of our targets, confronting evolution models of evolved massive stars at subsolar metallicity and constraining the impact of binary interaction in forming these stars. Methods. Spectroscopy was performed using the Potsdam Wolf–Rayet (PoWR) code and cross-correlation techniques. Disentanglement was performed using the code Spectangular or the shift-and-add algorithm. Evolutionary status was interpreted using the Binary Population and Spectral Synthesis (BPASS) code, exploring binary interaction and chemically homogeneous evolution. Results. Among our sample, 28/44 objects show composite spectra and are analyzed as such. An additional five targets show periodically moving WR primaries but no detected companions (SB1); two (BAT99 99 and 112) are potential WR + compact-object candidates owing to their high X-ray luminosities. We cannot confirm the binary nature of the remaining 11 candidates. About two-thirds of the WN components in binaries are identified as cWR, and one-third as hydrogen-burning WR stars. We establish metallicity-dependent mass-loss recipes, which broadly agree with those recently derived for single WN stars, and in which so-called WN3/O3 stars are clear outliers. We estimate that 45  ±  30% of the cWR stars in our sample have interacted with a companion via mass transfer. However, only ≈12  ±  7% of the cWR stars in our sample naively appear to have formed purely owing to stripping via a companion (12% b-WR). Assuming that apparently single WR stars truly formed as single stars, this comprises ≈4% of the whole LMC WN population, which is about ten times less than expected. No obvious differences in the properties of single and binary WN stars, whose luminosities extend down to log L ≈ 5.2 [L⊙], are apparent. With the exception of a few systems (BAT99 19, 49, and 103), the equatorial rotational velocities of the OB-type companions are moderate (veq ≲ 250 km s−1) and challenge standard formalisms of angular-momentum accretion. For most objects, chemically homogeneous evolution can be rejected for the secondary, but not for the WR progenitor. Conclusions. No obvious dichotomy in the locations of apparently single and binary WN stars on the Hertzsprung-Russell diagram is apparent. According to commonly used stellar evolution models (BPASS, Geneva), most apparently single WN stars could not have formed as single stars, implying that they were stripped by an undetected companion. Otherwise, it must follow that pre-WR mass-loss/mixing (e.g., during the red supergiant phase) are strongly underestimated in standard stellar evolution models.


2005 ◽  
Vol 13 ◽  
pp. 799-801
Author(s):  
Theodore R. Gull ◽  

AbstractWe have used the high spatial and high spectral resolution of the Space Telescope Imaging Spectrograph (STIS) to study Eta Carinae and the Homunculus. Since the last minimum in 1998.0, CCD spectral modes have followed changes in the Eta Carinae, and large-scale changes in the Homunculus. Since 2001.7, MAMA echelle-mode observations have followed changes in the Eta Carinae and the very nearby ejecta through the 2003.5 minimum. Very significant changes in the star and nebular occur as the X-Ray drop occurs in the minimum.


2011 ◽  
Vol 7 (S282) ◽  
pp. 259-260
Author(s):  
J. H. Groh

AbstractWe summarize recent efforts from our group to constrain the nature of both stars in the Eta Carinae binary system and its orbital parameters by studying the influence of the companion star on the spectrum of the primary star. We find that the cavity in the dense wind of the primary star strongly affects multi-wavelength diagnostics such as the ultraviolet spectrum, the optical hydrogen lines, and the shape of the near-infrared continuum region. These diagnostics have been previously interpreted as requiring a latitude-dependent wind generated by a fast-rotating primary star, but the effects of the companion on them provide tenuous evidence that the primary star is a rapid rotator.


2018 ◽  
Vol 18 (1) ◽  
pp. 18 ◽  
Author(s):  
Normyzatul Akmal Abd Malek ◽  
Hamizah Mohd Zaki ◽  
Mohammad Noor Jalil

The interaction of Active Pharmaceutical Ingredient (API) with other compounds will affect drugs stability, toxicity, modified dissolution profiles or may form a new compound with the different crystal structure. Acetaminophenol (APAP), the most common drug used widely (also known as Panadol) was mixed with Naringenin (NR) to glance for a new phase of interactions leading to new compound phase. The amide-acid supramolecular heterosynthon; N-H…O interaction between acid and the respective base were observed in the APAP-NR mixture blends. The interaction was prepared by the binary interaction from neat grinding and liquid-assisted grinding techniques at a different stoichiometry of binary mixture ratio of APAP-NR which were 1:1, 1:2 and 2:1 molar ratio. The interaction was estimated using Group Contribution Method (GCM) and physicochemical properties were characterized by Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR), powder X-ray diffraction (PXRD) and Differential Scanning Calorimetry (DSC) analysis. The GCM calculation gave good interaction strength at 212.93 MPa1/2. The ATR-FTIR, DSC and PXRD results obtained revealed an interaction with new phase formed.


2014 ◽  
Vol 784 (2) ◽  
pp. 125 ◽  
Author(s):  
Kenji Hamaguchi ◽  
Michael F. Corcoran ◽  
Christopher M. P. Russell ◽  
A. M. T. Pollock ◽  
Theodore R. Gull ◽  
...  
Keyword(s):  
X Ray ◽  

2018 ◽  
Vol 14 (S346) ◽  
pp. 93-97
Author(s):  
Amit Kashi

AbstractUsing high resolution 3D hydrodynamical simulations we quantify the amount of mass accreted onto the secondary star of the binary system η Carinae during periastron passage on its highly eccentric orbit. The accreted mass is responsible for the spectroscopic event occurring every orbit close to periastron passage, during which many lines vary and the x-ray emission associated with the destruction wind collision structure declines. The system is mainly known for its giant eruptions that occurred in the nineteenth century. The high mass model of the system, M1=170M⊙ and M2=80M⊙, gives Macc≍ 3×10−6M⊙ compatible with the amount required for explaining the reduction in secondary ionization photons during the spectroscopic event, and also matches its observed duration. As accretion occurs now, it surely occurred during the giant eruptions. This implies that mass transfer can have a huge influence on the evolution of massive stars.


1998 ◽  
Vol 299 (1) ◽  
pp. L5-L9 ◽  
Author(s):  
Julian M. Pittard ◽  
Ian R. Stevens ◽  
Michael F. Corcoran ◽  
Kazunori Ishibashi
Keyword(s):  
X Ray ◽  

1986 ◽  
Vol 116 ◽  
pp. 249-252
Author(s):  
R. Viotti ◽  
L. Rossi ◽  
A. Altamore ◽  
C. Rossi ◽  
A. Cassatella

The very peculiar object Eta Car is one of the best laboratory for the study of those physical processes - such as mass loss, superionization, dust condensation, wind interaction with the i.s. medium - that presently are of great astrophysical interest, especially for the study of the most luminous stars. For its light history and high luminosity Eta Car may also be considered as the galactic counterpart of the Hubble-Sandage variables. Eta Car is one of the rare astrophysical objects with evidence of dust condensation from ejected stellar matter (Andriesse et al. 78) On the other side the star is also producing a strong, hard X-ray flux (Chlebowski et al. 1984), and the problem is whether there is any physical reason to have these two quite different processes in the same stellar environment. In any case rather extreme physical conditions are required which cannot be verified in a uniformly, spherically symmetric atmospheric enevelope. Andriesse et al. in fact suggested the presence of strong inhomogeneities, such as filaments, possibly related to the presence of a strong magnetic field. This may also explain the X-ray emission. In the following we shall present new optical and UV observations of Eta Car and its small nebula with the aim of clearfying the physical nature of its wind.


Sign in / Sign up

Export Citation Format

Share Document