Antifungal activity of sugar beet chitinase against Cercospora beticola: an autoradiographic study on cell wall degradation

1994 ◽  
Vol 43 (6) ◽  
pp. 979-986 ◽  
Author(s):  
K. K. NIELSEN ◽  
P. JØRGENSEN ◽  
J. D. MIKKELSEN
BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Yang Yang ◽  
Xiaobao Liu ◽  
Jimiao Cai ◽  
Yipeng Chen ◽  
Boxun Li ◽  
...  

Abstract Background Sarocladium brachiariae is a newly identified endophytic fungus isolated from Brachiaria brizantha. A previous study indicated that S. brachiariae had antifungal activity; however, limited genomic information restrains further study. Therefore, we sequenced the genome of S. brachiariae and compared it with the genome of S. oryzae to identify differences between a Sarocladium plant pathogen and an endophyte. Results In this study, we reported a gapless genome sequence of a newly identified endophytic fungus Sarocladium brachiariae isolated from Brachiaria brizantha. The genome of S. brachiariae is 31.86 Mb, with a contig N50 of 3.27 Mb and 9903 protein coding genes. Phylogenomic analysis based on single copy orthologous genes provided insights into the evolutionary relationships of S. brachiariae and its closest species was identified as S. oryzae. Comparative genomics analysis revealed that S. brachiaria has 14.9% more plant cell wall degradation related CAZymes to S. oryzae, and 33.3% more fungal cell wall degradation related CAZymes, which could explain the antifungal activity of S. brachiaria. Based on Antibiotics & Secondary Metabolite Analysis Shell (antiSMASH) analysis, we identified a contact helvolic acid biosynthetic gene cluster (BGC) for the first time in S. oryzae. However, S. brachiaria had seven fewer terpene gene clusters, including helvolic acid BGC, compared with S. oryzae and this may be associated with adaptation to an endophytic lifestyle. Synteny analysis of polyketide synthases (PKS), non-ribosomal peptide synthetases (NRPS), and hybrid (PKS-NRPS) gene clusters between S. brachiariae and S. oryzae revealed that just 37.5% of tested clusters have good synteny, while 63.5% have no or poor synteny. This indicated that the S. brachiariae could potentially synthesize a variety of unknown-function secondary metabolites, which may play an important role in adaptation to its endophytic lifestyle and antifungal activity. Conclusions The data provided a better understanding of the Sarocladium brachiariae genome. Further comparative genomic analysis provided insight into the genomic basis of its endophytic lifestyle and antifungal activity.


2019 ◽  
Vol 19 (4) ◽  
pp. 428-438 ◽  
Author(s):  
Nívea P. de Sá ◽  
Ana P. Pôssa ◽  
Pilar Perez ◽  
Jaqueline M.S. Ferreira ◽  
Nayara C. Fonseca ◽  
...  

<p>Background: The increasing incidence of invasive forms of candidiasis and resistance to antifungal therapy leads us to seek new and more effective antifungal compounds. </P><P> Objective: To investigate the antifungal activity and toxicity as well as to evaluate the potential targets of 2- cyclohexylidenhydrazo-4-phenyl-thiazole (CPT) in Candida albicans. </P><P> Methods: The antifungal activity of CPT against the survival of C. albicans was investigated in Caenorhabditis elegans. Additionally, we determined the effect of CPT on the inhibition of C. albicans adhesion capacity to buccal epithelial cells (BECs), the toxicity of CPT in mammalian cells, and the potential targets of CPT in C. albicans. </P><P> Results: CPT exhibited a minimum inhibitory concentration (MIC) value of 0.4-1.9 µg/mL. Furthermore, CPT at high concentrations (>60 x MIC) showed no or low toxicity in HepG2 cells and <1% haemolysis in human erythrocytes. In addition, CPT decreased the adhesion capacity of yeasts to the BECs and prolonged the survival of C. elegans infected with C. albicans. Analysis of CPT-treated cells showed that their cell wall was thinner than that of untreated cells, especially the glucan layer. We found that there was a significantly lower quantity of 1,3-β-D-glucan present in CPT-treated cells than that in untreated cells. Assays performed on several mutant strains showed that the MIC value of CPT was high for its antifungal activity on yeasts with defective 1,3-β-glucan synthase. </P><P> Conclusion: In conclusion, CPT appears to target the cell wall of C. albicans, exhibits low toxicity in mammalian cells, and prolongs the survival of C. elegans infected with C. albicans.</p>


Author(s):  
Anna Biernasiuk ◽  
Anna Berecka-Rycerz ◽  
Anna Gumieniczek ◽  
Maria Malm ◽  
Krzysztof Z. Łączkowski ◽  
...  

Abstract Recently, the occurrence of candidiasis has increased dramatically, especially in immunocompromised patients. Additionally, their treatment is often ineffective due to the resistance of yeasts to antimycotics. Therefore, there is a need to search for new antifungals. A series of nine newly synthesized thiazole derivatives containing the cyclopropane system, showing promising activity against Candida spp., has been further investigated. We decided to verify their antifungal activity towards clinical Candida albicans isolated from the oral cavity of patients with hematological malignancies and investigate the mode of action on fungal cell, the effect of combination with the selected antimycotics, toxicity to erythrocytes, and lipophilicity. These studies were performed by the broth microdilution method, test with sorbitol and ergosterol, checkerboard technique, erythrocyte lysis assay, and reversed phase thin-layer chromatography, respectively. All derivatives showed very strong activity (similar and even higher than nystatin) against all C. albicans isolates with minimal inhibitory concentration (MIC) = 0.008–7.81 µg/mL Their mechanism of action may be related to action within the fungal cell wall structure and/or within the cell membrane. The interactions between the derivatives and the selected antimycotics (nystatin, chlorhexidine, and thymol) showed additive effect only in the case of combination some of them and thymol. The erythrocyte lysis assay confirmed the low cytotoxicity of these compounds as compared to nystatin. The high lipophilicity of the derivatives was related with their high antifungal activity. The present studies confirm that the studied thiazole derivatives containing the cyclopropane system appear to be a very promising group of compounds in treatment of infections caused by C. albicans. However, this requires further studies in vivo. Key points • The newly thiazoles showed high antifungal activity and some of them — additive effect in combination with thymol. • Their mode of action may be related with the influence on the structure of the fungal cell wall and/or the cell membrane. • The low cytotoxicity against erythrocytes and high lipophilicity of these derivatives are their additional good properties. Graphical abstract


2014 ◽  
Vol 111 (17) ◽  
pp. 6287-6292 ◽  
Author(s):  
J. W. Agger ◽  
T. Isaksen ◽  
A. Varnai ◽  
S. Vidal-Melgosa ◽  
W. G. T. Willats ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1649
Author(s):  
Hyang-Lan Eum ◽  
Seung-Hyun Han ◽  
Eun-Jin Lee

Improved methods are needed to extend the shelf life of strawberry fruits. The objective of this study was to determine the postharvest physiological mechanism of high-CO2 treatment in strawberries. Harvested strawberries were stored at 10 °C after 3 h of exposure to a treatment with 30% CO2 or air. Pectin and gene expression levels related to cell wall degradation were measured to assess the high-CO2 effects on the cell wall and lipid metabolism. Strawberries subjected to high-CO2 treatment presented higher pectin content and firmness and lower decay than those of control fruits. Genes encoding cell wall-degrading enzymes (pectin methylesterase, polygalacturonase, and pectate lyase) were downregulated after high-CO2 treatment. High-CO2 induced the expression of oligogalacturonides, thereby conferring defense against Botrytis cinerea in strawberry fruits, and lowering the decay incidence at seven days after its inoculation. Our findings suggest that high-CO2 treatment can maintain strawberry quality by reducing decay and cell wall degradation.


Sign in / Sign up

Export Citation Format

Share Document