scholarly journals Translation in vivo and in vitro of mRNAs Coding for Vitellogenin, Serum Albumin and Very-Low-Density Lipoprotein II from Chicken Liver. A Difference in Translational Efficiency

1981 ◽  
Vol 114 (3) ◽  
pp. 635-641 ◽  
Author(s):  
Be WIERINGA ◽  
Janneke ZWAAG-GERRITSEN ◽  
Janny MULDER ◽  
Geert AB ◽  
Max GRUBER
1997 ◽  
Vol 321 (2) ◽  
pp. 445-450 ◽  
Author(s):  
Miek C. JONG ◽  
Janine H. van REE ◽  
Vivian E. H. DAHLMANS ◽  
Rune R. FRANTS ◽  
Marten H. HOFKER ◽  
...  

The function of apolipoprotein (apo) C1 in vivo is not clearly defined. Because transgenic mice overexpressing human apoC1 show elevated triacylglycerol (TG) levels [Simonet, Bucay, Pitas, Lauer and Taylor (1991) J. Biol. Chem. 266, 8651Ő8654], an as yet unknown role for apoC1 in TG metabolism has been suggested. Here we investigated directly the effect of the complete absence of apoC1 on very-low-density lipoprotein (VLDL)-TG lipolysis, clearance and production, by performing studies with the previously generated apoC1-deficient mice. On a sucrose-rich, low fat/low cholesterol (LFC) diet, apoC1-deficient mice accumulate in their circulation VLDL particles, which contain relatively lower amounts of lipids when compared with VLDL isolated from control mice. Lipolysis assays in vitro on VLDL from apoC1-deficient and control mice showed no differences in apparent Km and Vmax values (0.27ŷ0.06 versus 0.24ŷ0.03 mmol of TG/litre and 0.40ŷ0.03 versus 0.36ŷ0.03 mmol of non-esterified fatty acid (NEFA)/min per litre respectively). To correct for potential differences in the size of the VLDL particles, the resulting Km values were also expressed relative to apoB concentration. Under these conditions apoC1-deficient VLDL displayed a lower, but not significant, Km value when compared with control VLDL (3.44ŷ0.71 versus 4.44ŷ0.52 mmol of TG2/g apoB per litre). VLDL turnover studies with autologous injections of [3H]TG-VLDL in vivo showed that the VLDL fractional catabolic rate (FCR) was decreased by up to 50% in the apoC1-deficient mice when compared with control mice (10.5ŷ3.4 versus 21.0ŷ1.2/h of pool TG). No significant differences between apoC1-deficient and control mice were observed in the hepatic VLDL production estimated by Triton WR139 injections (0.19ŷ0.02 versus 0.21ŷ0.05 mmol/h of TG per kg) and in the extra-hepatic lipolysis of VLDL-TG (4.99ŷ1.62 versus 3.46ŷ1.52/h of pool TG) in vivo. Furthermore, [125I]VLDLŐapoB turnover experiments in vivo also showed a 50% decrease in the FCR of VLDL in apoC1-deficient mice when compared with control mice on the LFC diet (1.1ŷ0.3 versus 2.1ŷ0.1/h of pool apoB). When mice were fed a very high fat/high cholesterol (HFC) diet, the VLDLŐapoB FCR was further decreased in apoC1-deficient mice (0.4ŷ0.1 versus 1.4ŷ0.4/h of pool apoB). We conclude that, in apoC1-deficient mice, the FCR of VLDL is reduced because of impaired uptake of VLDL remnants by hepatic receptors, whereas the production and lipolysis of VLDL-TG is not affected.


2020 ◽  
Vol 61 (1) ◽  
Author(s):  
Yeh-Lin Lu ◽  
Chia-Jung Lee ◽  
Shyr-Yi Lin ◽  
Wen-Chi Hou

Abstract Background The root major proteins of sweet potato trypsin inhibitors (SPTIs) or named sporamin, estimated for 60 to 80% water-soluble proteins, exhibited many biological activities. The human low-density lipoprotein (LDL) showed to form in vivo complex with endogenous oxidized alpha-1-antitrypsin. Little is known concerning the interactions between SPTIs and LDL in vitro. Results The thiobarbituric-acid-reactive-substance (TBARS) assays were used to monitor 0.1 mM Cu2+-mediated low-density lipoprotein (LDL) oxidations during 24-h reactions with or without SPTIs additions. The protein stains in native PAGE gels were used to identify the bindings between native or reduced forms of SPTIs or soybean TIs and LDL, or oxidized LDL (oxLDL). It was found that the SPTIs additions showed to reduce LDL oxidations in the first 6-h and then gradually decreased the capacities of anti-LDL oxidations. The protein stains in native PAGE gels showed more intense LDL bands in the presence of SPTIs, and 0.5-h and 1-h reached the highest one. The SPTIs also bound to the oxLDL, and low pH condition (pH 2.0) might break the interactions revealed by HPLC. The LDL or oxLDL adsorbed onto self-prepared SPTIs-affinity column and some components were eluted by 0.2 M KCl (pH 2.0). The native or reduced SPTIs or soybean TIs showed different binding capacities toward LDL and oxLDL in vitro. Conclusion The SPTIs might be useful in developing functional foods as antioxidant and nutrient supplements, and the physiological roles of SPTIs-LDL and SPTIs-oxLDL complex in vivo will investigate further using animal models.


1982 ◽  
Vol 156 (1) ◽  
pp. 230-242 ◽  
Author(s):  
F C de Beer ◽  
A K Soutar ◽  
M L Baltz ◽  
I M Trayner ◽  
A Feinstein ◽  
...  

C-reactive protein (CRP), the classical acute-phase protein, can bind phospholipids by virtue of its specific, calcium-dependent reactivity with phosphorylcholine residues. However, analysis of acute-phase serum by gel filtration and by density gradient ultracentrifugation showed that the CRP was in a free, uncomplexed form, despite the coexistent presence of the various classes of serum lipoproteins, all of which contain phospholipids. In contrast, when isolated CRP was aggregated by immobilization at a sufficient density on a solid phase and then exposed to normal human serum, it selectively bound low density lipoprotein (LDL) and traces of very low density lipoprotein. The reaction was calcium dependent and reversible by free phosphorylcholine but not by heparin. LDL isolated from normal plasma was also bound by aggregated CRP. CRP reacts in vitro with a wide variety of different ligands both of extrinsic and of autogenous origin, e.g., microbial products and damaged cell membranes, respectively. If CRP aggregated in vivo by complexing with these ligands than acquires the capacity to selectively bind LDL, the phenomenon may have significant implications for the function of CRP and for the metabolism, clearance, and deposition of LDL.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Hiroe Go ◽  
Jin Ah Ryuk ◽  
Hye Won Lee ◽  
In Sil Park ◽  
Ki-Jung Kil ◽  
...  

The present study was conducted to investigate the effect of Sagunja-tang on the lipid related disease in a rat model of menopausal hyperlipidemia and lipid accumulation in methyl-β-cyclodextrin-induced HepG2 cells. Inin vivostudy using menopausal hyperlipidemia rats, Sagunja-tang reduced retroperitoneal and perirenal fat, serum lipids, atherogenic index, cardiac risk factor, media thickness, and nonalcoholic steatohepatitis score, when compared to menopausal hyperlipidemia control rats. In HepG2 cells, Sagunja-tang significantly decreased the lipid accumulation, total cholesterol levels, and low-density/very-low-density lipoprotein levels. Moreover, Sagunja-tang reversed the methyl-β-cyclodextrin-induced decrease in the protein levels of critical molecule involved in cholesterol synthesis, sterol regulatory element binding protein-2, and low-density lipoprotein receptor and inhibited protein levels of 3-hydroxy-3-methylglutaryl coenzyme A reductase as well as activity. Phosphorylation level of AMP-activated protein kinase was stimulated by Sagunja-tang. These results suggest that Sagunja-tang has effect on inhibiting hepatic lipid accumulation through regulation of cholesterol synthesis and AMPK activityin vitro. These observations support the idea that Sagunja-tang is bioavailable bothin vivoandin vitroand could be developed as a preventive and therapeutic agent of hyperlipidemia in postmenopausal females.


Author(s):  
Shahenda, M. Elaby ◽  
Asmaa A. Salem ◽  
Jehan, B. Ali ◽  
A. F. Abdel-Salam

Two lactobacilli strains; Lactobacillus acidophilus ATCC 20079 and Lactobacillus plantarum ATCC 20179 and two bifidobacteria strains; Bifidobacterium bifidum GSGG 5286 and Bifidobacterium longum ATCC 15707 were studied their abilities to reduce the cholesterol content in vitro. It was investigated that the in vivo cholesterol-lowering effect of L. plantarum ATCC 20179, B. bifidum GSGG 5286 and mixture of both probiotics (L. plantarum ATCC20179 and B. bifidum GSGG5286) on hyperlipidaemic rats for 8 weeks. All lactobacilli and bifidobacteria strains assimilate the cholesterol content in laboratory media. It was observed the highest assimilation of cholesterol was in L. plantarum ATCC 20179 and B. bifidum GSGG 5286 strains. In vivo, L. plantarum ATCC 20179  group was more effective in improving serum lipid profile levels [total cholesterol (TC), triglycerides (TG), low density lipoprotein – cholesterol (LDL-C), high density lipoprotein – cholesterol                   (HDL-C), very low density lipoprotein – cholesterol (VLDL-C) and Atherogenic Index (AI)],                      liver enzyme activities (ALT, AST and ALP),  malonaldehyde (MDA), hydrogen peroxide (H2O2) and total antioxidants capacity (TAC) levels than mixed-organisms and B. bifidum groups, respectively of hyperlipidaemic rats. It was concluded that L. plantarum ATCC 20179 showed more                     favourable results than B. bifidum GSGG 5286 in relation to cardiovascular risk factors in hyperlipidaemic rats.


2007 ◽  
Vol 77 (1) ◽  
pp. 66-72 ◽  
Author(s):  
McEneny ◽  
Couston ◽  
McKibben ◽  
Young ◽  
Woodside

Raised total homocysteine (tHcy) levels may be involved in the etiology of cardiovascular disease and can lead to damage of vascular endothelial cells and arterial wall matrix. Folic acid supplementation can help negate these detrimental effects by reducing tHcy. Recent evidence has suggested an additional anti-atherogenic property of folate in protecting lipoproteins against oxidation. This study utilized both an in vitro and in vivo approach. In vitro: Very-low-density lipoprotein (VLDL) and low density lipoprotein (LDL) were isolated by rapid ultracentrifugation and then oxidized in the presence of increasing concentrations (0→ μmol/L) of either folic acid or 5-methyltetrahydrofolate (5-MTHF). In vivo: Twelve female subjects were supplemented with folic acid (1 mg/day), and the pre- and post-VLDL and LDL isolates subjected to oxidation. In vitro: 5-MTHF, but not folic acid, significantly increased the resistance of VLDL and LDL to oxidation. In vivo: Following folic acid supplementation, tHcy decreased, serum folate increased, and both VLDL and LDL displayed a significant increase in their resistance to oxidation. These results indicated that in vitro, only the active form of folate, 5-MTHF, had antioxidant properties. In vivo results demonstrated that folic acid supplementation reduced tHcy and protected both VLDL and LDL against oxidation. These findings provide further support for the use of folic acid supplements to aid in the prevention of atherosclerosis.


1990 ◽  
Vol 272 (3) ◽  
pp. 735-741 ◽  
Author(s):  
J C Holder ◽  
V A Zammit ◽  
D S Robinson

The removal from the blood and the uptake by the liver of injected very-low-density lipoprotein (VLDL) preparations that had been radiolabelled in their apoprotein and cholesteryl ester moieties was studied in lactating rats. Radiolabelled cholesteryl ester was removed from the blood and taken up by the liver more rapidly than sucrose-radiolabelled apoprotein. Near-maximum cholesteryl ester uptake by the liver occurred within 5 min of the injection of the VLDL. At this time, apoprotein B uptake by the liver was only about 25% of the maximum. Maximum uptake of the injected VLDL apoprotein B label was not achieved until at least 15 min after injection, by which time the total uptakes of cholesteryl ester and apoprotein B label were very similar. The results suggest that preferential uptake of the lipoprotein cholesteryl ester by the liver occurred before endocytosis of the entire lipoprotein complex. The fate of the injected VLDL cholesteryl ester after its uptake by the liver was also monitored. Radiolabel associated with the hepatic cholesteryl ester fraction fell steadily from its early maximum level, the rate of fall being faster and more extensive when the fatty acid, rather than the cholesterol, moiety of the ester was labelled. By 30 min after the injection of VLDL containing [3H]cholesteryl ester, over one-third of the injected label was already present as [3H]cholesterol in the liver. When VLDL containing cholesteryl [14C]oleate was injected, a substantial proportion (about 25%) of the injected radiolabelled fatty acid appeared in the hepatic triacylglycerol fraction within 60 min: very little was present in the plasma triacylglycerol fraction at this time.


Sign in / Sign up

Export Citation Format

Share Document