scholarly journals Murein biosynthesis in synchronized cells of Proteus mirabilis. Quantitative analysis of O-acetylated murein subunits and of chain terminators incorporated into the sacculus during the cell cycle

1987 ◽  
Vol 163 (2) ◽  
pp. 389-395 ◽  
Author(s):  
Jobst GMEINER ◽  
Elke SARNOW
1974 ◽  
Vol 61 (3) ◽  
pp. 591-598 ◽  
Author(s):  
Joan Smith-Sonneborn ◽  
Michael Klass

The clonal age in paramecia refers to the total number of vegetative divisions a clone has undergone since its origin at autogamy (self-fertilization). As clonal age increases, the interfission time usually increases. The DNA synthesis pattern of cells of different ages was compared by autoradiographic analysis of the DNA synthesis of synchronized cells at various time intervals during the cell cycle (from one division to the next). The study showed that the G1 period (the lag in DNA synthesis post division) was constant, irrespective of interfission time or clonal age; but the duration of the DNA synthesis period increased with increased interfission time or clonal age. Therefore, we have shown for the first time that the G1 period is fixed, and the S period is increased in a eukaryotic unicellular organism as a function of interfission time and clonal age.


1988 ◽  
Vol 8 (10) ◽  
pp. 4576-4578 ◽  
Author(s):  
S Dalton ◽  
J R Wells

Levels of trans-acting factor (H1-SF) binding to the histone H1 gene-specific motif (5'-AAACACA-3' [L. S. Coles and J. R. E. Wells, Nucleic Acids Res. 13:585-594, 1985]) increase 12-fold from G1 to S-phase in synchronized cells and decrease again in G2 phase of the cell cycle. Since the H1 element is required for S-phase expression of H1 genes (S. Dalton and J. R. E. Wells, EMBO J. 7:49-56, 1988), it is likely that the increased levels of H1-SF binding component play an important role in S-phase regulation of H1 gene transcription.


1983 ◽  
Vol 3 (3) ◽  
pp. 475-479 ◽  
Author(s):  
M J Rosok ◽  
L R Rohrschneider

We examined the extent of phosphorylation of vinculin on tyrosine after pulse labeling synchronized cells with 32PO4 at various stages of the cell cycle. No significant increase was observed in the incorporation of radioactivity into vinculin phosphotyrosine throughout the cell cycle, suggesting that the increased rate of phosphorylation of vinculin on tyrosine may not be the major event regulating stress fiber dissolution before mitosis.


PLoS ONE ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. e0218531 ◽  
Author(s):  
Elisabet Bállega ◽  
Reyes Carballar ◽  
Bàrbara Samper ◽  
Natalia Ricco ◽  
Mariana P. Ribeiro ◽  
...  

1981 ◽  
Vol 59 (7) ◽  
pp. 489-493 ◽  
Author(s):  
Selma Zimmerman ◽  
Arthur M. Zimmerman ◽  
Helen Laurence

Cyclic nucleotide levels were determined in division-synchronized Tetrahymena and the effect of Δ9-tetrahydrocannabinol (THC) on the cyclic nucleotide levels was studied. In non-drug-treated division-synchronized cells, there was no statistically significant variation in the level of cAMP and cGMP during the G2 period, preceding the first division. During the free running cell cycle (the interval of time between the first and second synchronous division) the twofold increase in the level of cAMP was statistically significant; however the variation in the level of cGMP was not statistically significant.THC caused a lowering of cAMP and cGMP levels throughout the 4-h experimental treatment. The suppression of cAMP and cGMP levels altered the cyclic nucleotide pattern of the cell cycle. The cAMP pattern was changed particularly in the G2 period preceding the first synchronous division, and immediately after division during the free running cell cycle. THC treatment caused division delays of approximately 8–15 min in the onset of the first and second synchronous division. However, the duration of the free running cell cycle (110–120 min) was unchanged. The suppression of cyclic nucleotide levels resulting from THC treatment is discussed in relation to delays in the division schedule.Nous avons déterminé le taux des nucléotides cycliques chez Tetrahymena se divisant de façon synchrone et nous avons étudié l'effet du Δ9-tétrahydrocannabinol (THC) sur le taux de ces nucléotides cycliques. Dans les cellules non traitées, se divisant de façon synchrone, il n'existe aucune variation statistiquement significative dans les teneurs du cAMP et du cGMP durant la période G2 précédant la première division. Durant le cycle cellulaire sans division (l'intervalle de temps entre la première et la seconde division synchrone), la teneur du cAMP augmente de deux fois, une augmentation statistiquement significative; cependant, la variation du taux du cGMP n'est pas statistiquement significative.


2001 ◽  
Vol 27 (3) ◽  
pp. 293-307 ◽  
Author(s):  
JS Lewis ◽  
TJ Thomas ◽  
CM Klinge ◽  
MA Gallo ◽  
T Thomas

It has been suggested that alterations in estradiol (E(2)) metabolism, resulting in increased production of 16alpha-hydroxyestrone (16alpha-OHE(1)), is associated with an increased risk of breast cancer. In the present study, we examined the effects of 16alpha-OHE(1)on DNA synthesis, cell cycle progression, and the expression of cell cycle regulatory genes in MCF-7 breast cancer cells. G(1) synchronized cells were treated with 1 to 25 nM 16alpha-OHE(1) for 24 and 48 h. [(3)H]Thymidine incorporation assay showed that 16alpha-OHE(1) caused an 8-fold increase in DNA synthesis compared with that of control cells, whereas E(2) caused a 4-fold increase. Flow cytometric analysis of cell cycle progression also demonstrated the potency of 16alpha-OHE(1) in stimulating cell growth. When G(1) synchronized cells were treated with 10 nM 16alpha-OHE(1) for 24 h, 62+/-3% of cells were in S phase compared with 14+/-3% and 52+/-2% of cells in the control and E(2)-treated groups respectively. In order to explore the role of 16alpha-OHE(1) in cell cycle regulation, we examined its effects on cyclins (D1, E, A, B1), cyclin dependent kinases (Cdk4, Cdk2), and retinoblastoma protein (pRB) using Western and Northern blot analysis. Treatment of cells with 10 nM 16alpha-OHE(1) resulted in 4- and 3-fold increases in cyclin D1 and cyclin A, respectively, at the protein level. There was also a significant increase in pRB phosphorylation and Cdk2 activation. In addition, transient transfection assay using an estrogen response element-driven luciferase reporter vector showed a 15-fold increase in estrogen receptor-mediated transactivation compared with control. These results show that 16alpha-OHE(1) is a potent estrogen capable of accelerating cell cycle kinetics and stimulating the expression of cell cycle regulatory proteins.


Sign in / Sign up

Export Citation Format

Share Document