scholarly journals Increased phosphorylation of vinculin on tyrosine does not occur during the release of stress fibers before mitosis in normal cells.

1983 ◽  
Vol 3 (3) ◽  
pp. 475-479 ◽  
Author(s):  
M J Rosok ◽  
L R Rohrschneider

We examined the extent of phosphorylation of vinculin on tyrosine after pulse labeling synchronized cells with 32PO4 at various stages of the cell cycle. No significant increase was observed in the incorporation of radioactivity into vinculin phosphotyrosine throughout the cell cycle, suggesting that the increased rate of phosphorylation of vinculin on tyrosine may not be the major event regulating stress fiber dissolution before mitosis.

1983 ◽  
Vol 3 (3) ◽  
pp. 475-479
Author(s):  
M J Rosok ◽  
L R Rohrschneider

We examined the extent of phosphorylation of vinculin on tyrosine after pulse labeling synchronized cells with 32PO4 at various stages of the cell cycle. No significant increase was observed in the incorporation of radioactivity into vinculin phosphotyrosine throughout the cell cycle, suggesting that the increased rate of phosphorylation of vinculin on tyrosine may not be the major event regulating stress fiber dissolution before mitosis.


Author(s):  
Irwin I. Singer

Stress fibers are muscle-like organelles containingnumerous 50-70A dia. actin microfilaments, usually found in mammalian fibroblasts. Their ends anchor in the adhesion plaques of the cell membrane which are in close proximity to the substrate and apparently attach the cell to it (1). Many tumorigenic cells often lack or contain sparse stress fibers of diminished thickness (2). Information concerning the mechanics of stress fiber formation and the control of their attachment to membranes is therefore crucial for understanding how normal cells move, in vitro, and how metastatic cells invade adjacent tissues in vivo.


2019 ◽  
Vol 19 (5) ◽  
pp. 599-609 ◽  
Author(s):  
Sumathi Sundaravadivelu ◽  
Sonia K. Raj ◽  
Banupriya S. Kumar ◽  
Poornima Arumugamand ◽  
Padma P. Ragunathan

Background: Functional foods, neutraceuticals and natural antioxidants have established their potential roles in the protection of human health and diseases. Thymoquinone (TQ), the main bioactive component of Nigella sativa seeds (black cumin seeds), a plant derived neutraceutical was used by ancient Egyptians because of their ability to cure a variety of health conditions and used as a dietary food supplement. Owing to its multi targeting nature, TQ interferes with a wide range of tumorigenic processes and counteracts carcinogenesis, malignant growth, invasion, migration, and angiogenesis. Additionally, TQ can specifically sensitize tumor cells towards conventional cancer treatments (e.g., radiotherapy, chemotherapy, and immunotherapy) and simultaneously minimize therapy-associated toxic effects in normal cells besides being cost effective and safe. TQ was found to play a protective role when given along with chemotherapeutic agents to normal cells. Methods: In the present study, reverse in silico docking approach was used to search for potential molecular targets for cancer therapy. Various metastatic and apoptotic targets were docked with the target ligand. TQ was also tested for its anticancer activities for its ability to cause cell death, arrest cell cycle and ability to inhibit PARP gene expression. Results: In silico docking studies showed that TQ effectively docked metastatic targets MMPs and other apoptotic and cell proliferation targets EGFR. They were able to bring about cell death mediated by apoptosis, cell cycle arrest in the late apoptotic stage and induce DNA damage too. TQ effectively down regulated PARP gene expression which can lead to enhanced cancer cell death. Conclusion: Thymoquinone a neutraceutical can be employed as a new therapeutic agent to target triple negative breast cancer which is otherwise difficult to treat as there are no receptors on them. Can be employed along with standard chemotherapeutic drugs to treat breast cancer as a combinatorial therapy.


2017 ◽  
Vol 43 (5) ◽  
pp. 1777-1789 ◽  
Author(s):  
Lei Zhang ◽  
Tianrong Ji ◽  
Qin Wang ◽  
Kexin Meng ◽  
Rui Zhang ◽  
...  

Background/Aims: Recent studies provided compelling evidence that stimulation of the calcium sensing receptor (CaSR) exerts direct renoprotective action at the glomerular podocyte level. This protective action may be attributed to the RhoA-dependent stabilization of the actin cytoskeleton. However, the underlying mechanisms remain unclear. Methods: In the present study, an immortalized human podocyte cell line was used. Fluo-3 fluorescence was utilized to determine intracellular Ca2+ concentration ([Ca2+]i), and western blotting was used to measure canonical transient receptor potential 6 (TRPC6) protein expression and RhoA activity. Stress fibers were detected by FITC-phalloidin. Results: Activating CaSR with a high extracellular Ca2+ concentration ([Ca2+]o) or R-568 (a type II CaSR agonist) induces an increase in the [Ca2+]i in a dose-dependent manner. This increase in [Ca2+]i is phospholipase C (PLC)-dependent and is smaller in the absence of extracellular Ca2+ than in the presence of 0.5 mM [Ca2+]o. The CaSR activation-induced [Ca2+]i increase is attenuated by the pharmacological blockage of TRPC6 channels or siRNA targeting TRPC6. These data suggest that TRPC6 is involved in CaSR activation-induced Ca2+ influx. Consistent with a previous study, CaSR stimulation results in an increase in RhoA activity. However, the knockdown of TRPC6 significantly abolished the RhoA activity increase induced by CaSR stimulation, suggesting that TRPC6-dependent Ca2+ entry is required for RhoA activation. The activated RhoA is involved in the formation of stress fibers and focal adhesions in response to CaSR stimulation because siRNA targeting RhoA attenuated the increase in the stress fiber mediated by CaSR stimulation. Moreover, this effect of CaSR activation on the formation of stress fibers is also abolished by the knockdown of TRPC6. Conclusion: TRPC6 is involved in the regulation of stress fiber formation and focal adhesions via the RhoA pathway in response to CaSR activation. This may explain the direct protective action of CaSR agonists.


1999 ◽  
Vol 145 (7) ◽  
pp. 1461-1470 ◽  
Author(s):  
Maja Oktay ◽  
Kishore K. Wary ◽  
Michael Dans ◽  
Raymond B. Birge ◽  
Filippo G. Giancotti

The extracellular matrix exerts a stringent control on the proliferation of normal cells, suggesting the existence of a mitogenic signaling pathway activated by integrins, but not significantly by growth factor receptors. Herein, we provide evidence that integrins cause a significant and protracted activation of Jun NH2-terminal kinase (JNK), while several growth factors cause more modest or no activation of this enzyme. Integrin-mediated stimulation of JNK required the association of focal adhesion kinase (FAK) with a Src kinase and p130CAS, the phosphorylation of p130CAS, and subsequently, the recruitment of Crk. Ras and PI-3K were not required. FAK–JNK signaling was necessary for proper progression through the G1 phase of the cell cycle. These findings establish a role for FAK in both the activation of JNK and the control of the cell cycle, and identify a physiological stimulus for JNK signaling that is consistent with the role of Jun in both proliferation and transformation.


2011 ◽  
Vol 301 (5) ◽  
pp. L656-L666 ◽  
Author(s):  
Nathan Sandbo ◽  
Andrew Lau ◽  
Jacob Kach ◽  
Caitlyn Ngam ◽  
Douglas Yau ◽  
...  

Myofibroblast differentiation induced by transforming growth factor-β (TGF-β) and characterized by de novo expression of smooth muscle (SM)-specific proteins is a key process in wound healing and in the pathogenesis of fibrosis. We have previously shown that TGF-β-induced expression and activation of serum response factor (SRF) is required for this process. In this study, we examined the signaling mechanism for SRF activation by TGF-β as it relates to pulmonary myofibroblast differentiation. TGF-β stimulated a profound, but delayed (18–24 h), activation of Rho kinase and formation of actin stress fibers, which paralleled SM α-actin expression. The translational inhibitor cycloheximide blocked these processes without affecting Smad-dependent gene transcription. Inhibition of Rho kinase by Y-27632 or depolymerization of actin by latrunculin B resulted in inhibition TGF-β-induced SRF activation and SM α-actin expression, having no effect on Smad signaling. Conversely, stabilization of actin stress fibers by jasplakinolide was sufficient to drive these processes in the absence of TGF-β. TGF-β promoted a delayed nuclear accumulation of the SRF coactivator megakaryoblastic leukemia-1 (MKL1)/myocardin-related transcription factor-A, which was inhibited by latrunculin B. Furthermore, TGF-β also induced MKL1 expression, which was inhibited by latrunculin B, by SRF inhibitor CCG-1423, or by SRF knockdown. Together, these data suggest a triphasic model for myofibroblast differentiation in response to TGF-β that involves 1) initial Smad-dependent expression of intermediate signaling molecules driving Rho activation and stress fiber formation, 2) nuclear accumulation of MKL1 and activation of SRF as a result of actin polymerization, and 3) SRF-dependent expression of MKL1, driving further myofibroblast differentiation.


2000 ◽  
Author(s):  
Hiroshi Yamada ◽  
Tohru Takemasa ◽  
Takami Yamaguchi

Abstract To elucidate the orientation of stress fibers in a cultured endothelial cell under cyclic stretch, we hypothesized that a stress fiber aligns so as to minimize the summation of its length change under cyclic stretch, and that there is a limit in the sensitivity of cellular response to the mechanical stimulus. Results from numerical simulations based on the continuum mechanics describe the experimental observations under uniaxial stretch well. They give us an insight to the biological phenomenon of the orientation in stress fibers under biaxial stretch from the viewpoint of mechanical engineering.


1974 ◽  
Vol 61 (3) ◽  
pp. 591-598 ◽  
Author(s):  
Joan Smith-Sonneborn ◽  
Michael Klass

The clonal age in paramecia refers to the total number of vegetative divisions a clone has undergone since its origin at autogamy (self-fertilization). As clonal age increases, the interfission time usually increases. The DNA synthesis pattern of cells of different ages was compared by autoradiographic analysis of the DNA synthesis of synchronized cells at various time intervals during the cell cycle (from one division to the next). The study showed that the G1 period (the lag in DNA synthesis post division) was constant, irrespective of interfission time or clonal age; but the duration of the DNA synthesis period increased with increased interfission time or clonal age. Therefore, we have shown for the first time that the G1 period is fixed, and the S period is increased in a eukaryotic unicellular organism as a function of interfission time and clonal age.


Author(s):  
Wipob Suttana ◽  
Chatubhong Singharachai ◽  
Rawiwan Charoensup ◽  
Narawadee Rujanapun ◽  
Chutima Suya

Chemotherapy can cause multidrug resistance in cancer cells and is cytotoxic to normal cells. Discovering natural bioactive compounds that are not cytotoxic to normal cells but inhibit proliferation and induce apoptosis in drug- sensitive and drug-resistant cancer cells could overcome these drawbacks of chemotherapy. This study investigated the antiproliferative effects of crude extracts of Benchalokawichian (BLW) remedy and its herbal components against drug-sensitive and drug-resistant cancer cells, cytotoxicity of the extracts toward normal cells, and their ability to induce apoptosis and cell cycle arrest in drug-sensitive and drug-resistant cancer cells. The extracts exhibited antiproliferative activity against doxorubicin-sensitive and doxorubicin-resistant erythromyelogenous leukemic cells (K562 and K562/adr). Tiliacora triandra root, BLW, and Harrisonia perforata root extracts displayed an IC50 of 77.00 ± 1.30, 79.33 ± 1.33, and 87.67 ± 0.67 µg/mL, respectively, against K562 cells. In contrast, Clerodendrum petasites, T. triandra, and H. perforata root extracts displayed the lowest IC50 against K562/adr cells (68.89 ± 0.75, 78.33 ± 0.69, and 86.78 ± 1.92 µg/mL, respectively). The resistance factor of the extracts was lower than that of doxorubicin, indicating that the extracts could overcome the multidrug resistance of cancer cells. Importantly, the extracts were negligibly cytotoxic to peripheral mononuclear cells, indicating minimal adverse effects in normal cells. In addition, these extracts induced apoptosis of K562 and K562/adr cells and caused cell cycle arrest at the G0/G1 phase in K562 cells. Keywords: Antiproliferative, Apoptosis, Benchalokawichian, Cell cycle, Multidrug resistance


Sign in / Sign up

Export Citation Format

Share Document