scholarly journals cis-Acting Elements and Transcription Factors Involved in the Intestinal Specific Expression of the Rat Calbindin-D9k Gene. Binding of the Intestine-Specific Transcription Factor Cdx-2 to the TATA Box

1996 ◽  
Vol 236 (3) ◽  
pp. 778-788 ◽  
Author(s):  
Mireille Lambert ◽  
Sabine Colnot ◽  
EunRan Suh ◽  
Fabienne L'horset ◽  
Claudine Blin ◽  
...  
1991 ◽  
Vol 11 (2) ◽  
pp. 677-687
Author(s):  
R L Widom ◽  
J A Ladias ◽  
S Kouidou ◽  
S K Karathanasis

The gene coding for apolipoprotein AI (apoAI), a plasma protein involved in the transport of cholesterol and other lipids in the plasma, is expressed predominantly in liver and intestine. Previous work in our laboratory has shown that different cis-acting elements in the 5'-flanking region of the human apoAI gene control its expression in human hepatoma (HepG2) and colon carcinoma (Caco-2) cells. Hepatocyte-specific expression is mediated by elements within the -256 to -41 DNA region relative to the apoAI gene transcription start site (+1). In this study it was found that the -222 to -110 apoAI gene region is necessary and sufficient for expression in HepG2 cells. It was also found that this DNA region functions as a powerful hepatocyte-specific transcriptional enhancer. Gel retardation and DNase I protection experiments showed that HepG2 cells contain proteins that bind to specific sites, sites A (-214 to -192), B (-169 to -146), and C (-134 to -119), within this enhancer. Site-directed mutagenesis that prevents binding of these proteins to individual or different combinations of these sites followed by functional analysis of these mutants in HepG2 cells revealed that protein binding to any one of these sites in the absence of binding to the others was not sufficient for expression. Binding to any two of these sites in any combination was sufficient for only low levels of expression. Binding to all three sites was essential for maximal expression. These results indicate that the transcriptional activity of the apoAI gene in liver cells is dependent on synergistic interactions between transcription factors bound to its enhancer.


2020 ◽  
Vol 21 (19) ◽  
pp. 7296
Author(s):  
Lingling Chen ◽  
Dongrui Zhang ◽  
Chunhua Song ◽  
Hemeng Wang ◽  
Xun Tang ◽  
...  

Background: Dryopteris fragrans, which is densely covered with glandular trichomes, is considered to be one of the ferns with the most medicinal potential. The transcriptomes from selected tissues of D. fragrans were collected and analyzed for functional and comparative genomic studies. The aim of this study was to determine the transcriptomic characteristics of wild D. fragrans sporangium in tissues from the SR (root), SL (sporophyll), and TRL (sporophyll with glandular trichomes removed). Results: Cluster analysis identified genes that were highly expressed in an organ-specific manner according to read mapping, feature counting, and normalization. The functional map identified gene clusters that can uniquely describe the function of each tissue. We identified a group of three tissue-specific transcription factors targeting the SL, SR, and TRL. In addition, highly expressed transcription factors (TFs) were found in each tissue-specific gene cluster, where ERF and bHLH transcription factors were the two types showing the most distinct expression patterns between the three different tissues. The specific expression of transcription factor genes varied between the different types of tissues. The numbers of transcription factors specifically expressed in the roots and sporophylls were 60 and 30, respectively, while only seven were found for the sporophylls with glandular trichomes removed. The expression of genes known to be associated with the development of glandular trichomes in flowering plants, including MIXTA, ATML1, and MYB106, were also validated and are discussed. In particular, a unigene encoding MIXTA was identified and exhibited the highest expression level in SL in D. fragrans. Conclusions: This study is the first report of global transcriptomic analysis in different tissues of D. fragrans, and the first to discuss these findings in the context of the development of homologous glandular trichomes. These results set the stage for further research on the development, stress resistance, and secondary metabolism of D. fragrans glandular trichomes.


1994 ◽  
Vol 14 (1) ◽  
pp. 373-381 ◽  
Author(s):  
D E Zhang ◽  
C J Hetherington ◽  
H M Chen ◽  
D G Tenen

The macrophage colony-stimulating factor (M-CSF) receptor is expressed in a tissue-specific fashion from two distinct promoters in monocytes/macrophages and the placenta. In order to further understand the transcription factors which play a role in the commitment of multipotential progenitors to the monocyte/macrophage lineage, we have initiated an investigation of the factors which activate the M-CSF receptor very early during the monocyte differentiation process. Here we demonstrate that the human monocytic M-CSF receptor promoter directs reporter gene activity in a tissue-specific fashion. Since one of the few transcription factors which have been implicated in the regulation of monocyte genes is the macrophage- and B-cell-specific PU.1 transcription factor, we investigated whether PU.1 binds and activates the M-CSF receptor promoter. Here we demonstrate that both in vitro-translated PU.1 and PU.1 from nuclear extracts bind to a specific site in the M-CSF receptor promoter just upstream from the major transcription initiation site. Mutations in this site which eliminate PU.1 binding decrease M-CSF receptor promoter activity significantly in macrophage cell lines only. Furthermore, PU.1 transactivates the M-CSF receptor promoter in nonmacrophage cells. These results suggest that PU.1 plays a major role in macrophage gene regulation and development by directing the expression of a receptor for a key macrophage growth factor.


1997 ◽  
Vol 17 (12) ◽  
pp. 7186-7194 ◽  
Author(s):  
M A Hussain ◽  
J Lee ◽  
C P Miller ◽  
J F Habener

The proglucagon gene is expressed in a highly restricted tissue-specific manner in the alpha cells of the pancreatic islet, the hypothalamus, and the small and large intestines. Proglucagon is processed to glucagon and glucagon-like peptides GLP-1 and -2. Glucagon is expressed in alpha cells and regulates glucose homeostasis. GLP-1 is implicated in the control of insulin secretion, food intake, and satiety signaling, and GLP-2 is implicated in regulating small-bowel growth. Cell-specific expression of the proglucagon gene is mediated by proteins that interact with the proximal G1 promoter element which contains several AT-rich domains with binding sites for homeodomain transcription factors. In an attempt to identify major homeodomain proteins involved in pancreatic alpha-cell-specific proglucagon expression, we found that the POU domain transcription factor brain 4 is abundantly expressed in proglucagon-producing islet cell lines and rat pancreatic islets. In the latter, brain 4 and glucagon immunoreactivity colocalize in the outer mantle of islets. Electrophoretic mobility shift assays with specific antisera identify brain 4 as a major constituent of nuclear proteins of glucagon-producing cells that bind to the G1 element of the proglucagon gene proximal promoter. Transcriptional transactivation experiments reveal that brain 4 is a major regulator of proglucagon gene expression by its interaction with the G1 element. The finding that a neuronal transcription factor is involved in glucagon gene transcription may explain the presence of proglucagon in certain areas of the brain as well as in pancreatic alpha cells. Further, this finding supports the idea that the neuronal properties of endodermis-derived endocrine pancreatic cells may find their basis in regulation of gene expression by neuronal transcription factors.


Development ◽  
2002 ◽  
Vol 129 (19) ◽  
pp. 4387-4397
Author(s):  
Fiona C. Wardle ◽  
Daniel H. Wainstock ◽  
Hazel L. Sive

The cement gland marks the extreme anterior ectoderm of the Xenopus embryo, and is determined through the overlap of several positional domains. In order to understand how these positional cues activate cement gland differentiation, the promoter of Xag1, a marker of cement gland differentiation, was analyzed. Previous studies have shown that Xag1 expression can be activated by the anterior-specific transcription factor Otx2, but that this activation is indirect. 102 bp of upstream genomic Xag1 sequence restricts reporter gene expression specifically to the cement gland. Within this region, putative binding sites for Ets and ATF/CREB transcription factors are both necessary and sufficient to drive cement gland-specific expression, and cooperate to do so. Furthermore, while the putative ATF/CREB factor is activated by Otx2, a factor acting through the putative Ets-binding site is not. These results suggest that Ets-like and ATF/CREB-like family members play a role in regulating Xag1 expression in the cement gland, through integration of Otx2 dependent and independent pathways.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3810-3810
Author(s):  
Chiara Refaldi ◽  
Elena Di Pierro ◽  
Maria C. Mocellini ◽  
Maria D. Cappellini

Abstract The promoter of the human beta-globin gene contains three positive cis-acting elements required for maximal transcription: the CACCC box located between −86 and −90, the CCAAT box located between −72 and − 76 and the TATA box located between −28 and −31 relative to the start site of transcription. Naturally occurring mutations within the TATA and the CACCC box regions have been recorded in patients with beta+ thalassemia. Mutations within the TATA box disrupt assembly of the basal transcription complex, while mutations at the CACCC box prevent binding of an erythroid-specific transcription factor EKLF. Surprisingly, no mutations have so far been identified in the highly conserved element CCAAT box and the transcription factors responsible for the regulatory activity of the CCAAT site in vivo have been less intensively studied. We report a novel mutation −76 C>A (HBB c. −126) detected by sequencing analysis of beta globin gene in a Italian beta+ thalassemic patient. The transversion C>A hits the first nucleotide in the CCAAT box of the beta globin gene. The carrier, a male 44 years old, shows a mild hypochromic and microcytic anaemia with reduced mean corpuscular volume and mean corpuscular haemoglobin (MCV 75 fl, MCH 25 pg) and Hb A2 level slightly increased (3.9%). Recently, studies in vitro in gel-shift and reporter assays, investigating the transcriptional activity of human beta globin CCAAT box, have identified five factors: NF-Y (CP1) a ubiquitous CCAAT box binding complex, GATA-1 an erythroid-specific transcription factor, C/EBPbeta, C/EBPgamma and C/EBPdelta members of CCAAT/enhancer-binding protein family involved in hemapoietic regulation. This represents the first report of a natural mutation of the human beta-globin CCAAT box and confirms its functional significance for in vivo transcription.


1997 ◽  
Vol 328 (1) ◽  
pp. 69-74 ◽  
Author(s):  
Erik JANSEN ◽  
A. Y. Torik AYOUBI ◽  
M. P. Sandra MEULEMANS ◽  
Wim J. M. VAN DE VEN

Prohormone convertases are involved in the tissue-specific endoproteolytic processing of prohormones and neuropeptide precursors within the secretory pathway. In the present study, we have isolated genomic clones comprising the 5ʹ-terminal region of the human prohormone convertase 2 (PC2) gene and established characteristics of the PC2 promoter region. The proximal promoter region is very G+C-rich and does not contain a canonical TATA box or a CAAT box. Transient expression assays with a set of human PC2 gene fragments containing progressive 5ʹ deletions demonstrate that the proximal promoter region is capable of directing high levels of neuroendocrine-specific expression of reporter gene constructs. In addition, we show that the transcription factor EGR-1 interacts with two distinct elements within the proximal human PC2 promoter region. Transfection experiments also demonstrate that EGR-1 is able to enhance PC2 promoter activity.


1991 ◽  
Vol 11 (3) ◽  
pp. 1531-1537 ◽  
Author(s):  
Q R Liu ◽  
M Tini ◽  
L C Tsui ◽  
M L Breitman

The elements regulating lens-specific expression of the mouse gamma F-crystallin gene were examined. Here we show that mouse gamma F-crystallin sequences -67 to +45 contain a low basal level of lens-specific promoter activity and that sequences -67 to -25, which are highly conserved among different gamma-crystallin genes, are able to function as a strong transcriptional activator when duplicated and placed upstream of the TATA box. We also show that nuclear factors from lens and nonlens cells are able to form different complexes with sequences centered at -46 to -36 and demonstrate that binding of the factor from lens cells correlates with lens-specific promoter activity of the mouse gamma F-crystallin gene.


1989 ◽  
Vol 9 (8) ◽  
pp. 3253-3259 ◽  
Author(s):  
J Whelan ◽  
D Poon ◽  
P A Weil ◽  
R Stein

The insulin gene is expressed almost exclusively in pancreatic beta-cells. The DNA sequences that control cell-specific expression are located upstream of the transcription initiation site. To identify the cis-acting transcriptional control regions within the rat insulin II gene that are responsible for this tissue-specific expression pattern, we constructed a series of 5'-flanking deletion mutants and analyzed their expression in vivo in transfected insulin-producing and -nonproducing cell lines. Pancreatic beta-cell-specific expression was shown to be controlled by enhancer sequences lying between nucleotides -342 and -91 relative to the transcription start site. The rat insulin II enhancer appears to be a chimera, composed of a number of distinct cis-acting DNA elements. Both positive and negative transcriptional regulatory elements appear to be responsible for this cell-type-specific expression. We have shown that expression from one element within the enhancer, which is found between nucleotides -100 and -91, is regulated by both positive- and negative-acting cellular transcription factors. Expression from chimeras containing only the enhancer element sequences from -100 to -91 were active only in insulin-producing cells, indicating that the positive-acting factor(s) required for this activity may be active only in beta-cells. In contrast to the enhancer region, the rat insulin II gene promoter did not appear to require cell-specific transcription factors. Promoter mutants with 5'-flanking sequences extending to nucleotides -90 and -73 were constitutively active in both insulin-producing and -nonproducing cells. These results suggest that rat insulin II gene transcription in pancreatic beta-cells is imparted by a combination of both negative- and positive-acting cellular factors interacting with the gene enhancer.


Sign in / Sign up

Export Citation Format

Share Document