Beneficial effects of gaseous hydrogen sulfide in hepatic ischemia/reperfusion injury

2012 ◽  
Vol 25 (8) ◽  
pp. 897-908 ◽  
Author(s):  
Eelke M. Bos ◽  
Pauline M. Snijder ◽  
Henrike Jekel ◽  
Michel Weij ◽  
Jaklien C. Leemans ◽  
...  
2013 ◽  
Vol 144 (5) ◽  
pp. S-1112
Author(s):  
Mateus A. Nogueira ◽  
Ana Maria M. Coelho ◽  
Sandra N. Sampietre ◽  
Nilza A. Molan ◽  
Rosely A. Patzina ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
T. C. Saat ◽  
S. van den Engel ◽  
W. Bijman-Lachger ◽  
S. S. Korevaar ◽  
M. J. Hoogduijn ◽  
...  

Liver ischemia reperfusion injury (IRI) is inevitable during transplantation and resection and is characterized by hepatocellular injury. Therapeutic strategies to reduce IRI and accelerate regeneration could offer major benefits. Mesenchymal stem cells (MSC) are reported to have anti-inflammatory and regeneration promoting properties. We investigated the effect of MSC in a model of combined IRI and partial resection in the mouse. Hepatic IRI was induced by occlusion of 70% of the blood flow during 60 minutes, followed by 30% hepatectomy. 2 × 105MSC or PBS were infused 2 hours before or 1 hour after IRI. Six, 48, and 120 hours postoperatively mice were sacrificed. Liver damage was evaluated by liver enzymes, histology, and inflammatory markers. Regeneration was determined by liver/body weight ratio, proliferating hepatocytes, and TGF-βlevels. Fate of MSC was visualized with 3D cryoimaging. Infusion of 2 × 105MSC 2 hours before or 1 hour after IRI and resection showed no beneficial effects. Tracking revealed that MSC were trapped in the lungs and did not migrate to the site of injury and many cells had already disappeared 2 hours after infusion. Based on these findings we conclude that intravenously infused MSC disappear rapidly and were unable to induce beneficial effects in a clinically relevant model of IRI and resection.


2021 ◽  
Vol 22 (23) ◽  
pp. 13155
Author(s):  
Małgorzata Krzystek-Korpacka ◽  
Mariusz G. Fleszar ◽  
Paulina Fortuna ◽  
Kinga Gostomska-Pampuch ◽  
Łukasz Lewandowski ◽  
...  

Molecular mechanisms underlying the beneficial effect of sitagliptin repurposed for hepatic ischemia-reperfusion injury (IRI) are poorly understood. We aimed to evaluate the impact of IRI and sitagliptin on the hepatic profile of eicosanoids (LC-MS/MS) and expression/concentration (RTqPCR/ELISA) of GLP-1/GLP-1R, SDF-1α/CXCR4 and VIP/VPAC1, VPAC2, and PAC1 in 36 rats. Animals were divided into four groups and subjected to ischemia (60 min) and reperfusion (24 h) with or without pretreatment with sitagliptin (5 mg/kg) (IR and SIR) or sham-operated with or without sitagliptin pretreatment (controls and sitagliptin). PGI2, PGE2, and 13,14-dihydro-PGE1 were significantly upregulated in IR but not SIR, while sitagliptin upregulated PGD2 and 15-deoxy-12,14-PGJ2. IR and sitagliptin non-significantly upregulated GLP-1 while Glp1r expression was borderline detectable. VIP concentration and Vpac2 expression were downregulated in IR but not SIR, while Vpac1 was significantly downregulated solely in SIR. IRI upregulated both CXCR4 expression and concentration, and sitagliptin pretreatment abrogated receptor overexpression and downregulated Sdf1. In conclusion, hepatic IRI is accompanied by an elevation in proinflammatory prostanoids and overexpression of CXCR4, combined with downregulation of VIP/VPAC2. Beneficial effects of sitagliptin during hepatic IRI might be mediated by drug-induced normalization of proinflammatory prostanoids and upregulation of PGD2 and by concomitant downregulation of SDF-1α/CXCR4 and reinstating VIP/VCAP2 signaling.


Sign in / Sign up

Export Citation Format

Share Document