Infestationincidence and mortality in white spruce stands by Dendroctonus rufipennis Kirby (Coleoptera, Scolytidae) in central British Columbia1

2009 ◽  
Vol 99 (1-5) ◽  
pp. 86-93 ◽  
Author(s):  
L. Safranyik
1972 ◽  
Vol 104 (12) ◽  
pp. 1977-1983 ◽  
Author(s):  
Roy C. Beckwith

AbstractWithin white spruce stands near Fairbanks, Alaska, and on the Kenai Peninsula, Alaska, Dendroctonus rufipennis, Ips spp., and Trypodendron lineatum disperse in late May and early June; other scolytids fly during June and July. Flight in interior Alaska precedes by about 2 weeks that on the Kenai Peninsula. Mean daily temperatures during spring and early summer are generally warmer in the interior than in coastal areas. There was a large increase in the total number of beetles in a thinned area, mostly of Dryocoetes affaber.


1979 ◽  
Vol 9 (4) ◽  
pp. 443-448 ◽  
Author(s):  
D. F. W. Pollard ◽  
C. C. Ying

Newly germinated seedlings of 66 open-pollinated white spruce Piceaglauca (Moench) Voss families from 11 native stands in southeastern Ontario were investigated for responses to declining photoperiod under controlled environments. Amount of height increment (free growth) during a period of declining photoperiod was studied. Variation in duration of free growth was found mostly associated with the family-within-stand component. The stand effect was negligible and decreased as seedlings aged. Lack of stand differentiation suggests that white spruce stands in. southeastern Ontario may have originated from the same base population. High genetic variation at the family level may reflect an adaptive strategy to cope with the extremely variable local climate.


2015 ◽  
Vol 358 ◽  
pp. 98-107 ◽  
Author(s):  
Seung-Il Lee ◽  
John R. Spence ◽  
David W. Langor ◽  
Jaime Pinzon

2012 ◽  
Vol 42 (8) ◽  
pp. 1566-1576 ◽  
Author(s):  
Derek Joseph Lawrence ◽  
N. Luckai ◽  
W.L. Meyer ◽  
C. Shahi ◽  
A.J. Fazekas ◽  
...  

Mixedwood forests of white spruce ( Picea glauca (Moench) Voss) and trembling aspen ( Populus tremuloides Michx.) may possess ecological advantages over monospecific white spruce stands. Belowground competition may be reduced through vertically stratified roots; facilitation of growth may occur in upper soil layers through nutrient-rich trembling aspen litterfall. These effects may incentivize white spruce to preferentially exploit upper soil layers in mixedwood stands, resulting in wider root systems. This research contrasted white spruce fine root (diameter <2 mm) distributions in organic layers of white spruce and mixedwood stands. Research occurred at the Fallingsnow Ecosystem Project site in northwestern Ontario. Eighteen plots represented mixedwood and pure white spruce stands. Trees were mapped; foliage and root samples were collected. Roots were separated by species and scanned to determine length. Simple sequence repeat DNA profiles were determined for all white spruce trees and for 45 white spruce root fragments per plot. Root and tree DNA profiles were matched; corresponding distances were calculated. Most (80%) root fragments were within 3.2 m of tree stems. Root prevalence decreased rapidly with distance. Organic layer pH was significantly less acidic in mixedwood plots, but only in one block. A subtle significant trend towards wider root distributions occurred in mixedwood stands.


1999 ◽  
Vol 75 (3) ◽  
pp. 505-513 ◽  
Author(s):  
Rongzhou Man ◽  
Victor J. Lieffers

In boreal mixedwood forests, aspen (Populus tremuloides) and white spruce (Picea glauca) commonly grow in mixture. These species may avoid competition through differential shade tolerance, physical separation of canopies, phenological differences, successional separation, and differences in soil resource utilization. Aspen may also be able to positively affect the growth of white spruce by improving litter decomposition and nutrient cycling rates, controlling grass and shrub competition, ameliorating environmental extremes, and reducing pest attack. These positive relationships likely make mixed-species stands more productive than pure stands of the same species. The evidence regarding the productivity of pure versus mixed aspen/white spruce stands in natural unmanaged forests is examined in this paper. Key words: Tree mixture; productivity; boreal mixedwoods; aspen; white spruce


1999 ◽  
Vol 29 (7) ◽  
pp. 993-1001 ◽  
Author(s):  
E C Cole ◽  
M Newton ◽  
A Youngblood

The current spruce bark beetle (Dendroctonus rufipennis Kirby) epidemic in interior Alaska is leaving large expanses of dead spruce with little spruce regeneration. Many of these areas are habitat for moose (Alces alces). To establish spruce regeneration and improve browse production for moose, paper birch (Betula papyrifera Marsh), willow (Salix spp.), and three stocktypes (plug+1 bareroot, and 1+0 plugs from two nurseries) of white spruce (Picea glauca (Moench) Voss) were planted in freshly cutover areas on Fort Richardson, near Anchorage. Four vegetation-management treatments were compared: broadcast site preparation with herbicides, banded site preparation with herbicides, mechanical scarification, and untreated control. Spruce seedlings had the greatest growth in the broadcast site preparation treatment (p < 0.01). Stocktype was the most important factor in spruce growth, with bareroot transplant seedlings being the tallest and largest 5 years after planting (p < 0.001). In the first 3 years, relative stem volume growth was greater for plug seedlings than for bareroot seedlings (p < 0.001). By year 4, relative growth rates were similar among all stocktypes. Treatment effects for paper birch and willow were confounded by moose browsing. Results indicate spruce can be regenerated and moose browse enhanced simultaneously in forests in interior Alaska.


1983 ◽  
Vol 13 (1) ◽  
pp. 96-101 ◽  
Author(s):  
Richard A. Werner ◽  
Edward H. Holsten

White spruce (Piceaglauca (Moench) Voss) stands in the Resurrection Creek watershed in south-central Alaska were infested by spruce bettles, Dendroctonusrufipennis Kirby, between 1974 and 1975. Thirty permanent plots were established within the infested area in 1976 to evaluate the immediate and long-term impact on white spruce stands. Plots were revisited annually for 5 years. Between 1976 and 1980, 29% of all white spruce was killed by spruce beetles. This loss accounted for 59% of the commercial white spruce volume in the watershed. Mortality was greatest in the larger diameter classes during the early part of the infestation, but smaller diameter trees were subsequently attacked as the number of noninfested trees declined. The impact of spruce beetles on structure and species composition of white spruce stands is given along with a discussion of management implications.


1993 ◽  
Vol 23 (6) ◽  
pp. 1233-1239 ◽  
Author(s):  
David Paré ◽  
Keith Van Cleve

Nutrient content and biomass of aboveground annual production, and nutrient content of total aboveground biomass, of 14-year-old assemblages of plants developing on harvested white spruce (Piceaglauca (Moench) Voss) sites were estimated by vegetation harvesting and compared with values previously measured in mature white spruce stands. The aboveground biomass production of 14-year-old regenerating trembling aspen (Populustremuloides Michx.) clumps was 3 times higher than the aboveground production of mature white spruce stands, while the aboveground production of other regenerating communities was lower or equivalent to the production of mature white spruce. However, the nutrient content of aboveground current biomass was greater in all regenerating communities than in mature white spruce stands, except on regenerating sites where the forest floor was absent. The amount of nutrient incorporated in current aboveground biomass was 5 times greater in trembling aspen clumps than in mature white spruce stands. Furthermore, the total N, P, and K content of aboveground vegetation corresponded, in 14-year-old trembling aspen clumps, to a value that ranged from 50 to 109% of the amount found in the aboveground biomass of mature white spruce forests, while this value ranged from 4 to 14% on other regeneration types. Trembling aspen and balsam poplar (Populusbalsamifera L.) both showed the greatest concentrations of N and P in foliar litter fall. These observations suggest that the development of a trembling aspen clump after clear-cutting contributes to the acceleration of nutrient cycling. On the other hand, the development of herbaceous communities during the same period after clear-cutting was accompanied by much lower nutrient cycling rates in the aboveground portion of the vegetation.


Sign in / Sign up

Export Citation Format

Share Document