Changes in the Hill Reaction and the Chlorophyll Fluorescence of Chloroplasts Isolated from Wheat Plants Infected with Stem Rust (Puccinia graminis f. sp. tritici)

1987 ◽  
Vol 118 (2) ◽  
pp. 123-130 ◽  
Author(s):  
R. Berghaus ◽  
H. J. Reisener ◽  
H. Arenz ◽  
U. F. Franck
1984 ◽  
Vol 64 (3) ◽  
pp. 707-713 ◽  
Author(s):  
A. ALI ◽  
V. SOUZA MACHADO

Leaf chlorophyll fluorescence in susceptible B. campestris L. plants was greatly enhanced and the Hill reaction activity of isolated chloroplasts was inhibited by 10−4 M atrazine. The herbicide did not produce similar responses in resistant plants. 14C-atrazine was used to determine if, in addition, there were differences in uptake, translocation, and metabolism of the herbicide by the susceptible and resistant biotypes. The 14C-atrazine in nutrient solution was readily taken up by the roots of both biotypes and was rapidly translocated to the shoot. The 14C-atrazine was quickly metabolized and after a 24-h period 56 and 63% of the extractable radioactivity in susceptible and resistant plants, respectively, was present as metabolites, the major one being 2-hydroxyatrazine. Following a foliar application, less than 1% of the applied radioactivity moved into other parts of the plant. These results clearly show that triazine resistance in wild turnip rape is based in the chloroplast and that uptake, translocation, and metabolism of the herbicide play no decisive role in selectivity between the susceptible and resistant biotypes.Key words: Atrazine selectivity, Brassica campestris, chlorophyll fluorescence, Hill reaction, atrazine metabolism.


1986 ◽  
Vol 41 (4) ◽  
pp. 433-436 ◽  
Author(s):  
Christof Niehrs ◽  
Jan Ahlers

The pesticide PCP was shown to inhibit the Hill reaction in broken chloroplasts (I50 = 15 μᴍ) and to quench chlorophyll fluorescence. Both effects require preillumination. In contrast to the common “phenol-type” inhibitors, neither inhibition of Hill reaction nor chlorophyll fluorescence quench were affected by pretreatment of chloroplast with trypsin instead of preillumination. An inhibition site differing from the “phenol type” inhibitors is therefore assumed. The results presented indicate that the observed light requirement is due to electron transport through PS II. Measurements of intrinsic tryptophane fluorescence relate the PCP site of binding to a hydro- phobic environment.


1987 ◽  
Vol 42 (6) ◽  
pp. 684-689 ◽  
Author(s):  
John L. Huppatz ◽  
John N. Phillips

Optically active α-methylbenzylamino 2-cyanoacrylic esters were synthesized and assayed as inhibitors of the Hill reaction in isolated pea chloroplast fragments. The 5-isomers were more potent inhibitors than the S-isomers with discriminations of from ten to greater than 100-fold being observed. A β-alkyl substituent in the cyanoacrylate molecule affected both the level of activity and the difference in activity between the isomers. An α,α-dimethylbenzylamino derivative was also active at about the same level as the corresponding α-methylbenzylamino racemate. This result could be explained in terms of the orientation of the phenyl ring in the receptor site. Replacement of the α-methylbenzylamino group by other α-alkyl and α-phenyl substituents had little effect on activity. However, an α-benzyl group was beneficial.


1984 ◽  
Vol 39 (5) ◽  
pp. 374-377 ◽  
Author(s):  
J. J. S. van Rensen

The reactivation of the Hill reaction in CO2-depleted broken chloroplasts by various concentrations of bicarbonate was measured in the absence and in the presence of photosystem II herbicides. It appears that these herbicides decrease the apparent affinity of the thylakoid membrane for bicarbonate. Different characteristics of bicarbonate binding were observed in chloroplasts of triazine-resistant Amaranthus hybridus compared to the triazine-sensitive biotype. It is concluded that photosystem II herbicides, bicarbonate and formate interact with each other in their binding to the Qв-protein and their interference with photosynthetic electron transport.


Weed Science ◽  
1974 ◽  
Vol 22 (1) ◽  
pp. 10-14 ◽  
Author(s):  
R. E. Holm ◽  
D. E. Stallard

Five 2,5-dimethyl-1-pyrrolidinecarboxanilides were effective inhibitors of the Hill reaction. However, only thecisisomers were active; thetransisomers were totally inactive. Experiments were conducted using14C-5328 (cis-2,5-dimethyl-1-pyrrolidinecarboxanilide). A correlation existed between resistance of various plants to 5328 and their ability to metabolize it to water soluble metabolites. Velvetleaf (Abutilon theophrastiMedic.) and proso millet (Panicum miliaceumL.) seedlings were very susceptible to 5328 and were unable to metabolize it. Tall morningglory [Ipomoea purpurea(L.) Roth] seedlings were highly tolerant to 5328 and converted it completely to its metabolites. Corn (Zea maysL. ‘DeKalb variety XL-45′) seedlings which were slightly susceptible to 5328 injury were able to metabolize up to 90% of the parent compound. Corn foliage uptake of14C-5328 applied to the soil surface occurred through the adventitious roots.


1977 ◽  
Vol 55 (11) ◽  
pp. 1445-1452 ◽  
Author(s):  
D. J. Samborski ◽  
W. K. Kim ◽  
R. Rohringer ◽  
N. K. Howes ◽  
R. J. Baker

Seedlings of resistant (Sr6) and susceptible (sr6) near-isogenic lines of wheat (Triticum aestivum L.) were inoculated with a race of stem rust (Puccinia graminis Pers. f. sp. tritici Eriks. & E. Henn.) that was avirulent on the line with Sr6 and they were kept at 19, 25, 26, and 27 °C. Fluorescence microscopy was used to detect autofluorescing necrotic host cells and rust colonies after these were stained with a fiuorochrome (Calcofluor White M2R New).In leaves containing the Sr6 gene, a smaller percentage of colonies grown at 25 °C had necrotic cells associated with them than those that were grown at 19 °C. The incidence of colony-associated necrosis in these leaves could be further reduced by increasing the temperature to 26 °C and 27 °C. Similarly, the number of necrotic host cells per colony decreased with an increase in temperature. Colonies in genotypically resistant leaves were usually smaller than those in genotypically susceptible leaves, but the differences in colony sizes between these two lines decreased at the higher temperatures.When infected plants containing the Sr6 gene were kept for varying times at 25 °C and then were transferred to 19 °C, there was significantly less fungal growth and more necrosis than in plants kept continuously at 25 °C. This necrosis occurred largely in those cells that were invaded after the transfer to 19 °C, when the Sr6 gene was activated.


1961 ◽  
Vol 1 (5) ◽  
pp. 377-388 ◽  
Author(s):  
Rajni Govindjee ◽  
Eugene Rabinowitch
Keyword(s):  

Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 387-392 ◽  
Author(s):  
Mohsen Mohammadi ◽  
Davoud Torkamaneh ◽  
Mehran Patpour

Following emergence of Ug99, the new virulent race of Puccinia graminis f. sp. tritici in Africa, a global effort for identification and utilization of new sources of Ug99-resistant germplasm has been undertaken. In this study, we conducted replicated experiments to evaluate the resistance of Iranian wheat germplasm to the TTKSK lineage of the Ug99 race of P. graminis f. sp. tritici. We also evaluated for presence of stem rust resistance genes (i.e., Sr2, Sr24, Sr26, Sr38, Sr39, Sr31, and Sr1RSAmigo) in wheat cultivars and breeding lines widely cultivated in Iran. Our phenotyping data revealed high levels of susceptibility to Ug99 in Iranian bread wheat germplasm. Our genotyping data revealed that Iranian cultivars do not carry Sr24, Sr26, or Sr1RSAmigo. Only a few salt-tolerant cultivars and breeding lines tested positively for Sr2, Sr31, Sr38, or Sr39 markers. In conclusion, the genetic basis for resistance to Ug99 in Iranian wheat cultivars was found to be vulnerable. Acquiring knowledge about existing resistance genes and haplotypes in wheat cultivars and breeding lines will help breeders, cereal pathologists, and policy makers to select and pyramid effective stem rust resistance genes.


1993 ◽  
Vol 73 (3) ◽  
pp. 845-846 ◽  
Author(s):  
A. R. McElroy

AC Nordic is a late-maturing orchardgrass (Dactylis glomerata L.) cultivar. It was developed by mass selection for yield, persistence and resistance to stem rust (Puccinia graminis) at the Plant Research Centre, Agriculture Canada, Ottawa. Its yield was similar to that of cv. Sumas in a total of 33 station years in Quebec. Yield in second and subsequent production years was 101.6% of cv. Sumas over 19 station years. Key words: Dactylis glomerata L., orchardgrass


Sign in / Sign up

Export Citation Format

Share Document