Cell Surface Properties of Pseudomonas syringae pv. phaseolicola Wild-type and hrp Mutants

1992 ◽  
Vol 135 (2) ◽  
pp. 135-152 ◽  
Author(s):  
WilliamF. Fett ◽  
StanleyF. Osman ◽  
MichaelF. Dunn ◽  
NickolasJ. Panopoulos
Development ◽  
2001 ◽  
Vol 128 (11) ◽  
pp. 1995-2005 ◽  
Author(s):  
Ahmed Mansouri ◽  
Patrick Pla ◽  
Lionel Larue ◽  
Peter Gruss

Pax3 is a member of the paired-box-containing transcription factors. It is expressed in the developing somites, dorsal spinal cord, mesencephalon and neural crest derivatives. Several loss-of-function mutations are correlated with the Splotch phenotype in mice and Waardenburg syndrome in humans. Malformations include a lack of muscle in the limb, a failure of neural tube closure and dysgenesis of numerous neural crest derivatives. In this study we have used embryonic stem (ES) cells to generate a lacZ knock-in into the Pax3 locus. The Pax3 knock-in Splotch allele (Sp2G) was used to generate Pax3-deficient ES cells in order to investigate whether, in chimeric embryos, Pax3 is acting cell autonomously in the somites and the neural tube. We found that while Pax3 function is essential for the neuroepithelium and somites, a wild-type environment rescues mutant neural crest cells. In the two affected embryonic tissues, mutant and wild-type cells undergo segregation and do not intermingle.The contribution of mutant cells to the neural tube and the somites displayed temporal differences. All chimeric embryos showed a remarkable contribution of blue cells to the neural tube at all stages analyzed, indicating that the Pax3-deficient cells are not excluded from the neural epithelium while development proceeds. In contrast, this is not true for the paraxial mesoderm. The somite contribution of Pax3−/− ES cells becomes less frequent in older embryos as compared to controls with Pax3+/− ES cells. We propose that although Pax3 function is related to cell surface properties, its role may differ in various tissues. In fact, apoptosis was found in Pax3-deficient cells of the lateral dermomyotome but not in the neural tube.


Microbiology ◽  
2009 ◽  
Vol 155 (4) ◽  
pp. 1192-1202 ◽  
Author(s):  
Mariam Wasim ◽  
Amber N. Bible ◽  
Zhihong Xie ◽  
Gladys Alexandre

An ahpC mutant derivative of Azospirillum brasilense Sp245 (strain SK586) that encodes an alkyl hydroperoxide reductase was found to be more sensitive to oxidative stress caused by organic hydroperoxides compared with the wild-type. In addition, the ahpC mutant strain had multiple defects in a large array of cellular functions that were consistent with alteration of cell-surface properties, such as cell morphology in stationary phase, Calcofluor White-, Congo Red- and lectin-binding abilities, as well as cell-to-cell aggregation and flocculation. All phenotypes of the ahpC mutant were complemented by in trans expression of AhpC, and overexpression of AhpC in the wild-type strain was found to affect the same set of phenotypes, suggesting that the pleiotropic effects were caused by the ahpC mutation. SK586 was also found to be fully motile, but it lost motility at a higher rate than the wild-type during growth, such that most SK586 cells were non-motile in stationary phase. Despite these defects, the mutant did not differ from the wild-type in short-term colonization of sterile wheat roots when inoculated alone, and in competition with the wild-type strain; this implied that AhpC activity may not endow the cells with a competitive advantage in colonization under these conditions. Although the exact function of AhpC in affecting these phenotypes remains to be determined, changes in cell morphology, surface properties, cell-to-cell aggregation and flocculation are common adaptive responses to various stresses in bacteria, and the data obtained here suggest that AhpC contributes to modulating such stress responses in A. brasilense.


Anaerobe ◽  
2014 ◽  
Vol 28 ◽  
pp. 212-215 ◽  
Author(s):  
Valérie Andriantsoanirina ◽  
Anne-Claire Teolis ◽  
Liu Xin Xin ◽  
Marie Jose Butel ◽  
Julio Aires

2014 ◽  
Vol 94 (2) ◽  
pp. 272-289 ◽  
Author(s):  
Alexandra Faulds‐Pain ◽  
Susan M. Twine ◽  
Evgeny Vinogradov ◽  
Philippa C. R. Strong ◽  
Anne Dell ◽  
...  

2009 ◽  
Vol 72 (8) ◽  
pp. 1699-1704 ◽  
Author(s):  
SUPAYANG PIYAWAN VORAVUTHIKUNCHAI ◽  
SAKOL SUWALAK

The effects of Quercus infectoria (family Fagaceae) nutgalls on cell surface properties of Shiga toxigenic Escherichia coli (STEC) were investigated with an assay of microbial adhesion to hydrocarbon. The surface of bacterial cells treated with Q. infectoria exhibited a higher level of cell surface hydrophobicity (CSH) toward toluene than did the surface of untreated cells. With 50% ethanolic extract, the CSH of the three strains of STEC O157:H7 treated with 4× MIC of the extract resulted in moderate or strong hydrophobicity, whereas at 2× MIC and MIC, the CSH of only one strain of E. coli O157:H7 was significantly affected. The 95% ethanolic extract had a significant effect on CSH of all three strains at both 4× MIC and 2× MIC but not at the MIC. The effect on bacterial CSH was less pronounced with the other STEC strains. At 4× MIC, the 50% ethanolic extract increased the CSH of all non-O157 STEC strains significantly. At 2× MIC and 4× MIC, the 95% ethanolic extract affected the CSH of E. coli O26:H11 significantly but did not affect E. coli O111:NM or E. coli O22. Electron microscopic examination revealed the loss of pili in the treated cells. The ability of Q. infectoria extract to modify hydrophobic domains enables this extract to partition the lipids of the bacterial cell membrane, rendering the membrane more permeable and allowing leakage of ions and other cell contents, which leads to cell death. Further studies are required to evaluate the effects of Q. infectoria extract in food systems or in vivo and provide support for the use of this extract as a food additive for control of these STEC pathogens.


2015 ◽  
Vol 104 ◽  
pp. 129-135 ◽  
Author(s):  
Ewa Kaczorek ◽  
Wojciech Smułek ◽  
Agnieszka Zgoła-Grześkowiak ◽  
Katarzyna Bielicka-Daszkiewicz ◽  
Andrzej Olszanowski

Sign in / Sign up

Export Citation Format

Share Document