scholarly journals Alkyl hydroperoxide reductase has a role in oxidative stress resistance and in modulating changes in cell-surface properties in Azospirillum brasilense Sp245

Microbiology ◽  
2009 ◽  
Vol 155 (4) ◽  
pp. 1192-1202 ◽  
Author(s):  
Mariam Wasim ◽  
Amber N. Bible ◽  
Zhihong Xie ◽  
Gladys Alexandre

An ahpC mutant derivative of Azospirillum brasilense Sp245 (strain SK586) that encodes an alkyl hydroperoxide reductase was found to be more sensitive to oxidative stress caused by organic hydroperoxides compared with the wild-type. In addition, the ahpC mutant strain had multiple defects in a large array of cellular functions that were consistent with alteration of cell-surface properties, such as cell morphology in stationary phase, Calcofluor White-, Congo Red- and lectin-binding abilities, as well as cell-to-cell aggregation and flocculation. All phenotypes of the ahpC mutant were complemented by in trans expression of AhpC, and overexpression of AhpC in the wild-type strain was found to affect the same set of phenotypes, suggesting that the pleiotropic effects were caused by the ahpC mutation. SK586 was also found to be fully motile, but it lost motility at a higher rate than the wild-type during growth, such that most SK586 cells were non-motile in stationary phase. Despite these defects, the mutant did not differ from the wild-type in short-term colonization of sterile wheat roots when inoculated alone, and in competition with the wild-type strain; this implied that AhpC activity may not endow the cells with a competitive advantage in colonization under these conditions. Although the exact function of AhpC in affecting these phenotypes remains to be determined, changes in cell morphology, surface properties, cell-to-cell aggregation and flocculation are common adaptive responses to various stresses in bacteria, and the data obtained here suggest that AhpC contributes to modulating such stress responses in A. brasilense.

2003 ◽  
Vol 69 (6) ◽  
pp. 3244-3250 ◽  
Author(s):  
Daniel Kadouri ◽  
Edouard Jurkevitch ◽  
Yaacov Okon

ABSTRACT When grown under suboptimal conditions, rhizobacteria of the genus Azospirillum produce high levels of poly-β-hydroxybutyrate (PHB). Azospirillum brasilense strain Sp7 and a phbC (PHB synthase) mutant strain in which PHB production is impaired were evaluated for metabolic versatility, for the ability to endure various stress conditions, for survival in soil inoculants, and for the potential to promote plant growth. The carbon source utilization data were similar for the wild-type and mutant strains, but the generation time of the wild-type strain was shorter than that of the mutant strain with all carbon sources tested. The ability of the wild type to endure UV irradiation, heat, osmotic pressure, osmotic shock, and desiccation and to grow in the presence of hydrogen peroxide was greater than that of the mutant strain. The motility and cell aggregation of the mutant strain were greater than the motility and cell aggregation of the wild type. However, the wild type exhibited greater chemotactic responses towards attractants than the mutant strain exhibited. The wild-type strain exhibited better survival than the mutant strain in carrier materials used for soil inoculants, but no difference in the ability to promote plant growth was detected between the strains. In soil, the two strains colonized roots to the same extent. It appears that synthesis and utilization of PHB as a carbon and energy source by A. brasilense under stress conditions favor establishment of this bacterium and its survival in competitive environments. However, in A. brasilense, PHB production does not seem to provide an advantage in root colonization under the conditions tested.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Francisco Cruz-Pérez ◽  
Roxana Lara-Oueilhe ◽  
Cynthia Marcos-Jiménez ◽  
Ricardo Cuatlayotl-Olarte ◽  
María Luisa Xiqui-Vázquez ◽  
...  

AbstractThe plant growth-promoting bacterium Azospirillum brasilense contains several genes encoding proteins involved in the biosynthesis and degradation of the second messenger cyclic-di-GMP, which may control key bacterial functions, such as biofilm formation and motility. Here, we analysed the function and expression of the cdgD gene, encoding a multidomain protein that includes GGDEF-EAL domains and CHASE and PAS domains. An insertional cdgD gene mutant was constructed, and analysis of biofilm and extracellular polymeric substance production, as well as the motility phenotype indicated that cdgD encoded a functional diguanylate protein. These results were correlated with a reduced overall cellular concentration of cyclic-di-GMP in the mutant over 48 h compared with that observed in the wild-type strain, which was recovered in the complemented strain. In addition, cdgD gene expression was measured in cells growing under planktonic or biofilm conditions, and differential expression was observed when KNO3 or NH4Cl was added to the minimal medium as a nitrogen source. The transcriptional fusion of the cdgD promoter with the gene encoding the autofluorescent mCherry protein indicated that the cdgD gene was expressed both under abiotic conditions and in association with wheat roots. Reduced colonization of wheat roots was observed for the mutant compared with the wild-type strain grown in the same soil conditions. The Azospirillum-plant association begins with the motility of the bacterium towards the plant rhizosphere followed by the adsorption and adherence of these bacteria to plant roots. Therefore, it is important to study the genes that contribute to this initial interaction of the bacterium with its host plant.


1979 ◽  
Vol 35 (1) ◽  
pp. 321-338
Author(s):  
C. Rossier ◽  
G. Gerisch ◽  
D. Malchow

Adenosine 3′,5′-cyclic phosphorothioate (cAMP-S) is a cyclic AMP (cAMP) analogue which is only slowly hydrolysed by phosphodiesterases of Dictyostelium discoideum. The affinity of cAMP-S to cAMP receptors at the cell surface is only one order of magnitude lower than that of cAMP. cAMP-S can replace cAMP as a stimulant with respect to all receptor-mediated responses tested, including chemotaxis and the induction of cAMP pulses. cAMP-S does not affect growth of D. discoideum but it blocks cell aggregation at a uniform concentration of 5 × 10(−7) M in agar plate cultures of strain NC-4 as well as its axenically growing derivative, Ax-2. Another wild-type strain of D. discoideum, v-12, is able to aggregate on agar plates supplemented with 1 mM cAMP-S. The development of Polysphondylium pallidum and P. violaceum is also highly cAMP-S resistant. In Ax-2 both differentiation from the growth phase to the aggregation-competent stage and chemotaxis are cAMP-S sensitive, whereas in v-12 only chemotaxis is inhibited. v-12 can still form streams of cohering cells and fruiting bodies when chemotaxis is inhibited by cAMP-S. Whereas cAMP induces differentiation into stalk cells at concentrations of 10(−3) or 10(−4) M, cAMP-S has the same effect in strain v-12 at the much lower concentration of 10(−6) M.


2020 ◽  
Vol 86 (7) ◽  
Author(s):  
Rui Yao ◽  
Pei Zhou ◽  
Chengjin Wu ◽  
Liming Liu ◽  
Jing Wu

ABSTRACT In Saccharomyces cerevisiae, Y family DNA polymerase Rev1 is involved in the repair of DNA damage by translesion DNA synthesis (TLS). In the current study, to elucidate the role of Rev1 in oxidative stress-induced DNA damage in S. cerevisiae, REV1 was deleted and overexpressed; transcriptome analysis of these mutants along with the wild-type strain was performed to screen potential genes that could be associated with REV1 during response to DNA damage. When the yeast cells were treated with 2 mM H2O2, the deletion of REV1 resulted in a 1.5- and 2.8-fold decrease in the survival rate and mutation frequency, respectively, whereas overexpression of REV1 increased the survival rate and mutation frequency by 1.1- and 2.9-fold, respectively, compared to the survival rate and mutation frequency of the wild-type strain. Transcriptome and phenotypic analyses identified that Sml1 aggravated oxidative stress in the yeast cells by inhibiting the activity of Rev1. This inhibition was due to the physical interaction between the BRCA1 C terminus (BRCT) domain of Rev1 and amino acid residues 36 to 70 of Sml1; the cell survival rate and mutation frequency increased by 1.8- and 3.1-fold, respectively, when this interaction was blocked. We also found that Sml1 inhibited Rev1 phosphorylation under oxidative stress and that deletion of SML1 increased the phosphorylation of Rev1 by 46%, whereas overexpression of SML1 reduced phosphorylation of Rev1. Overall, these findings demonstrate that Sml1 could be a novel regulator that mediates Rev1 dephosphorylation to inhibit its activity during oxidative stress. IMPORTANCE Rev1 was critical for cell growth in S. cerevisiae, and the deletion of REV1 caused a severe growth defect in cells exposed to oxidative stress (2 mM H2O2). Furthermore, we found that Sml1 physically interacted with Rev1 and inhibited Rev1 phosphorylation, thereby inhibiting Rev1 DNA antioxidant activity. These findings indicate that Sml1 could be a novel regulator for Rev1 in response to DNA damage by oxidative stress.


1992 ◽  
Vol 135 (2) ◽  
pp. 135-152 ◽  
Author(s):  
WilliamF. Fett ◽  
StanleyF. Osman ◽  
MichaelF. Dunn ◽  
NickolasJ. Panopoulos

2000 ◽  
Vol 182 (24) ◽  
pp. 6964-6974 ◽  
Author(s):  
Erika Hild ◽  
Kathy Takayama ◽  
Rose-Marie Olsson ◽  
Staffan Kjelleberg

ABSTRACT We report the cloning, sequencing, and characterization of therpoE homolog in Vibrio angustum S14. TherpoE gene encodes a protein with a predicted molecular mass of 19.4 kDa and has been demonstrated to be present as a single-copy gene by Southern blot analysis. The deduced amino acid sequence of RpoE is most similar to that of the RpoE homolog of Sphingomonas aromaticivorans, ς24, displaying sequence similarity and identity of 63 and 43%, respectively. Northern blot analysis demonstrated the induction of rpoE 6, 12, and 40 min after a temperature shift to 40°C. An rpoE mutant was constructed by gene disruption. There was no difference in viability during logarithmic growth, stationary phase, or carbon starvation between the wild type and the rpoE mutant strain. In contrast, survival of the mutant was impaired following heat shock during exponential growth, as well as after oxidative stress at 24 h of carbon starvation. The mutant exhibited microcolony formation during optimal growth temperatures (22 to 30°C), and cell area measurements revealed an increase in cell volume of the mutant during growth at 30°C, compared to the wild-type strain. Moreover, outer membrane and periplasmic space protein analysis demonstrated many alterations in the protein profiles for the mutant during growth and carbon starvation, as well as following oxidative stress, in comparison with the wild-type strain. It is thereby concluded that RpoE has an extracytoplasmic function and mediates a range of specific responses in stressed as well as unstressed cells of V. angustum S14.


Development ◽  
2001 ◽  
Vol 128 (11) ◽  
pp. 1995-2005 ◽  
Author(s):  
Ahmed Mansouri ◽  
Patrick Pla ◽  
Lionel Larue ◽  
Peter Gruss

Pax3 is a member of the paired-box-containing transcription factors. It is expressed in the developing somites, dorsal spinal cord, mesencephalon and neural crest derivatives. Several loss-of-function mutations are correlated with the Splotch phenotype in mice and Waardenburg syndrome in humans. Malformations include a lack of muscle in the limb, a failure of neural tube closure and dysgenesis of numerous neural crest derivatives. In this study we have used embryonic stem (ES) cells to generate a lacZ knock-in into the Pax3 locus. The Pax3 knock-in Splotch allele (Sp2G) was used to generate Pax3-deficient ES cells in order to investigate whether, in chimeric embryos, Pax3 is acting cell autonomously in the somites and the neural tube. We found that while Pax3 function is essential for the neuroepithelium and somites, a wild-type environment rescues mutant neural crest cells. In the two affected embryonic tissues, mutant and wild-type cells undergo segregation and do not intermingle.The contribution of mutant cells to the neural tube and the somites displayed temporal differences. All chimeric embryos showed a remarkable contribution of blue cells to the neural tube at all stages analyzed, indicating that the Pax3-deficient cells are not excluded from the neural epithelium while development proceeds. In contrast, this is not true for the paraxial mesoderm. The somite contribution of Pax3−/− ES cells becomes less frequent in older embryos as compared to controls with Pax3+/− ES cells. We propose that although Pax3 function is related to cell surface properties, its role may differ in various tissues. In fact, apoptosis was found in Pax3-deficient cells of the lateral dermomyotome but not in the neural tube.


2019 ◽  
Vol 87 (6) ◽  
Author(s):  
Crystal M. Austin ◽  
Siamak Garabaglu ◽  
Christina N. Krute ◽  
Miranda J. Ridder ◽  
Nichole A. Seawell ◽  
...  

ABSTRACTTo persist within the host and cause disease,Staphylococcus aureusrelies on its ability to precisely fine-tune virulence factor expression in response to rapidly changing environments. During an unbiased transposon mutant screen, we observed that disruption of a two-gene operon,yjbIH, resulted in decreased levels of pigmentation and aureolysin (Aur) activity relative to the wild-type strain. Further analyses revealed that YjbH, a predicted thioredoxin-like oxidoreductase, is predominantly responsible for the observedyjbIHmutant phenotypes, though a minor role exists for the putative truncated hemoglobin YjbI. These differences were due to significantly decreased expression ofcrtOPQMNandaur. Previous studies found that YjbH targets the disulfide- and oxidative stress-responsive regulator Spx for degradation by ClpXP. The absence ofyjbHoryjbIresulted in altered sensitivities to nitrosative and oxidative stress and iron deprivation. Additionally, aconitase activity was altered in theyjbHandyjbImutant strains. Decreased levels of pigmentation and aureolysin (Aur) activity in theyjbHmutant were found to be Spx dependent. Lastly, we used a murine sepsis model to determine the effect of theyjbIHdeletion on pathogenesis and found that the mutant was better able to colonize the kidneys and spleens during an acute infection than the wild-type strain. These studies identified changes in pigmentation and protease activity in response to YjbIH and are the first to have shown a role for these proteins during infection.


2005 ◽  
Vol 187 (14) ◽  
pp. 4853-4864 ◽  
Author(s):  
Kislay Parvatiyar ◽  
Eyad M. Alsabbagh ◽  
Urs A. Ochsner ◽  
Michelle A. Stegemeyer ◽  
Alan G. Smulian ◽  
...  

ABSTRACT The impact of arsenite [As(III)] on several levels of cellular metabolism and gene regulation was examined in Pseudomonas aeruginosa. P. aeruginosa isogenic mutants devoid of antioxidant enzymes or defective in various metabolic pathways, DNA repair systems, metal storage proteins, global regulators, or quorum sensing circuitry were examined for their sensitivity to As(III). Mutants lacking the As(III) translocator (ArsB), superoxide dismutase (SOD), catabolite repression control protein (Crc), or glutathione reductase (Gor) were more sensitive to As(III) than wild-type bacteria. The MICs of As(III) under aerobic conditions were 0.2, 0.3, 0.8, and 1.9 mM for arsB, sodA sodB, crc, and gor mutants, respectively, and were 1.5- to 13-fold less than the MIC for the wild-type strain. A two-dimensional gel/matrix-assisted laser desorption ionization-time of flight analysis of As(III)-treated wild-type bacteria showed significantly (>40-fold) increased levels of a heat shock protein (IbpA) and a putative allo-threonine aldolase (GlyI). Smaller increases (up to 3.1-fold) in expression were observed for acetyl-coenzyme A acetyltransferase (AtoB), a probable aldehyde dehydrogenase (KauB), ribosomal protein L25 (RplY), and the probable DNA-binding stress protein (PA0962). In contrast, decreased levels of a heme oxygenase (HemO/PigA) were found upon As(III) treatment. Isogenic mutants were successfully constructed for six of the eight genes encoding the aforementioned proteins. When treated with sublethal concentrations of As(III), each mutant revealed a marginal to significant lag period prior to resumption of apparent normal growth compared to that observed in the wild-type strain. Our results suggest that As(III) exposure results in an oxidative stress-like response in P. aeruginosa, although activities of classic oxidative stress enzymes are not increased. Instead, relief from As(III)-based oxidative stress is accomplished from the collective activities of ArsB, glutathione reductase, and the global regulator Crc. SOD appears to be involved, but its function may be in the protection of superoxide-sensitive sulfhydryl groups.


2019 ◽  
Vol 21 (1) ◽  
pp. 98
Author(s):  
Bintong Yang ◽  
Haichao Song ◽  
Dingjie An ◽  
Dongxing Zhang ◽  
Sayed Haidar Abbas Raza ◽  
...  

Aeromonas veronii is one of the main pathogens causing freshwater fish sepsis and ulcer syndrome. This bacterium has caused serious economic losses in the aquaculture industry worldwide, and it has become an important zoonotic and aquatic agent. However, little is known about the molecular mechanism of pathogenesis of A. veronii. In this study, we first constructed an unmarked mutant strain (ΔpreA) by generating an in-frame deletion of the preA gene, which encodes a periplasmic binding protein, to investigate its role in A. veronii TH0426. Our results showed that the motility and biofilm formation ability of ΔpreA were similar to those of the wild-type strain. However, the adhesion and invasion ability in epithelioma papulosum cyprini (EPC) cells were significantly enhanced (2.0-fold). Furthermore, the median lethal dose (LD50) of ΔpreA was 7.6-fold higher than that of the wild-type strain, which illustrates that the virulence of the mutant was significantly enhanced. This finding is also supported by the cytotoxicity test results, which showed that the toxicity of ΔpreA to EPC cells was enhanced 1.3-fold relative to the wild type. Conversely, tolerance test results showed that oxidative stress resistance of ΔpreA decreased 5.9-fold compared to with the wild-type strain. The results suggest that preA may negatively regulate the virulence of A. veronii TH0426 through the regulation of resistance to oxidative stress. These insights will help to further elucidate the function of preA and understand the pathogenesis of A. veronii.


Sign in / Sign up

Export Citation Format

Share Document