Effects of Astaxanthin-containing Oil on Development and Stress-related Gene Expression of Bovine Embryos Exposed to Heat Stress

2010 ◽  
Vol 45 (6) ◽  
pp. e387-e391 ◽  
Author(s):  
T Namekawa ◽  
S Ikeda ◽  
M Sugimoto ◽  
S Kume
2017 ◽  
Vol 29 (9) ◽  
pp. 1868 ◽  
Author(s):  
Jean-Marc Lelièvre ◽  
Nathalie Peynot ◽  
Sylvie Ruffini ◽  
Ludivine Laffont ◽  
Daniel Le Bourhis ◽  
...  

In in vitro-produced (IVP) bovine embryos, a burst in transcriptional activation of the embryonic genome (EGA) occurs at the 8–16-cell stage. To examine transcriptional regulation prior to EGA, notably in response to heat stress, we asked (1) whether the spontaneous expression of a luciferase transgene that is driven by the minimal mouse heat-shock protein 1b (hspa1b) gene promoter paralleled that of HSPA1A during EGA in IVP bovine embryo and (2) whether expression of the endogenous heat-inducible iHSPA group member HSPA1A gene and the hspa1b/luciferase transgene were induced by heat stress (HS) prior to EGA. Using two culture systems, we showed that luciferase activity levels rose during the 40-h long EGA-associated cell cycle. In contrast, iHSPA proteins were abundant in matured oocytes and in blastomeres from the two-cell to the 16-cell stages. However, normalised results detected a rise in the level of HSPA1A and luciferase mRNA during EGA, when transcription was required for their protein expression. Prior to EGA, HS-induced premature luciferase activity and transgene expression were clearly inhibited. We could not, however, establish whether this was also true for HSPA1A expression because of the decay of the abundant maternal transcripts prior to EGA. In bovine embryos, heat-induced expression of hspa1b/luciferase, and most likely of HSPA1A, was therefore strictly dependent on EGA. The level of the heat-shock transcription factor 1 molecules that were found in cell nuclei during embryonic development correlated better with the embryo’s capacity for heat-shock response than with EGA-associated gene expression.


2012 ◽  
Vol 24 (1) ◽  
pp. 199
Author(s):  
C. F. Silva ◽  
A. C. S. Castilho ◽  
R. A. Satrapa ◽  
R. Z. Puelker ◽  
E. M. Razza ◽  
...  

Heat stress (HS) reduces the production of bovine embryos, especially taurine embryos, which are not adapted to heat. However, little is known about the competence of embryos produced under HS in breeds adapted or not adapted to heat. The aim of this study was to compare the gene expression of PLAC8, HSF1, COX2 and CDX2, related to competence and implantation, in bovine in vitro-produced embryos (Bos taurus vs Bos indicus), submitted or not submitted to HS. Oocytes from Nelore (zebu) and Jersey (taurine) cows were aspirated by ovum pickup, in vitro-matured in TCM-199 medium with bicarbonate containing 10% FCS, 2 μg mL–1 of pyruvate, 75 μg mL–1 of gentamicin, 20 μg mL–1 of FSH and 10 IU mL–1 of LH for 22 h at 38.5°C in 5% CO2 in air. Matured oocytes were fertilized with semen from Nelore (n = 6) and Jersey (n = 6) bulls, respectively, at 38.5°C in 5% CO2 in air. The fertilization medium was TALP-IVF supplemented with 6 mg mL–1 of fatty acid-free BSA, 2 μL mL–1 of pyruvate, 75 μg mL–1 of gentamicin, 11 μg mL–1 of heparin and 44 μL mL–1 of penicillamine, hypotaurine and epinephrine. The day of fertilization was considered Day 0. Twelve hours post-insemination, presumptive zygotes were denuded and randomly divided into 2 groups, nonstressed or stressed and both were in vitro cultured at 38.5°C in 90% N2, 5% CO2 and 5% O2 in SOFaaci medium supplemented with 5% FCS, 5% BSA and 0,2% sodium pyruvate. In the stressed group, 96-h post-insemination embryos were subjected to HS of 41°C for 6 consecutive hours and then returned to 38.5°C. On Day 7, pools with 5 blastocysts [Nelore (n = 9); Nelore HS (n = 7); Jersey (n = 5); Jersey HS (n = 5)] were subjected to RNA extraction (RNeasy, Qiagen Inc., Valencia, CA, USA). The expression of target genes was analysed by real-time reverse transcription PCR with oligo-dT in reverse transcription and bovine specific-primers in PCR. The expression of cyclophilin A was used as an internal control. The mean mRNA levels of target genes among groups were compared by parametric ANOVA, followed by orthogonal contrast. Heat stress reduced (P < 0.05) mRNA expression of CDX2 and PLAC8 in both breeds; additionally, the expression of these genes was higher in the zebu breed when compared with the taurine breed. Messenger RNA expression of COX2 did not differ between groups, under HS or not, in both the Jersey and Nelore breeds. Moreover, HS reduced the mRNA expression of HSF1 (P < 0.05) in Nelore groups, but not in Jersey groups. The highest levels of PLAC8 and CDX2 in nonstressed Nelore embryos indicate better competence and a higher capacity of implantation of these embryos when compared with Jersey and HS embryos in both breeds. Moreover, low HSF1 levels in stressed Nelore embryos indicate the thermotolerance ability of this breed. In conclusion, the data indicate that HS alters the pattern of gene expression in Nelore and Jersey in vitro-produced bovine embryos. This research was supported by FAPESP.


2010 ◽  
Vol 22 (1) ◽  
pp. 276
Author(s):  
F. Q. Costa ◽  
M. M. Pereira ◽  
S. Wohlres-Viana ◽  
R. V. Serapiao ◽  
B. C. Carvalho ◽  
...  

Heat stress has been shown to have detrimental effects (41°C) during the first 12 h of in vitro maturation on bovine embryo development (Edwards JL and Hansen PJ 1996 Biol. Reprod. 55, 341-346). However, little is known about the effect on gene expression of in vitro-fertilized andparthenogenetic bovine embryos. This study evaluated the gene expression of in vitro-fertilized andparthenogenetic blastocysts derived fromheat-stressed oocytes. The transcripts evaluated were associated with genes encoding proteins involved in blastocoel formation [aquaporin (Aqp) 3 and Na+/K+-ATPase alpha 1; Watson AJ and Barcroft LC 2001 Frontiers Biosci. 6:d708-730] and cell viability (Bax and Peroxiredoxin 1; Van Delft MF and Huang DCS 2006 Cell Res. 16, 203-213; RaguS etal. 2007 PNAS104, 9747-9752). Oocytes were in vitro matured for 12 h at 41°C followed by 12 h at 38.5°C (heat-stressed oocytes; HS) or for 24 h at 38.5°C (non-heat-stressed oocytes; NHS) under 5% CO2. Heat-stressed and NHS oocytes were in vitro fertilized with Holstein sperm (HS-IVF and NHS-IVF subgroups, respectively) or activated with ionomycin and 6-DMAP (HS-PART and NHS-PART subgroups, respectively). Presumptive zygotes were cultured in CR2aa medium under 5% CO2, 5% O2, and 90% N2 at 38.5°C. Embryos at blastocyst stage with same quality grade for all subgroups were obtained from 3 different replicates and distributed in pools of 10 embryos for relative quantification of the target transcripts. RNA extraction and reverse transcription were performed and cDNA quantified by real-time PCR. Transcripts of H2a gene were used as endogenous control, and statistical analysis was performed by pair-wise, fixed reallocation randomization test. Gene expression comparisons were performed between HS-IVF and NHS-IVF, HS-PART and NHS-PART, NHS-PART and NHS-IVF, and HS-PART and HS-IVF subgroups. Blastocyst rate is shown as mean ± SEM and relative expression as n-fold. The heat stress on oocytes during in vitro maturation decreased (P < 0.05, ANOVA) the development of presumptive zygotes to blastocyst stage at Day 8 for in vitro-fertilized (19.9 ± 2.9% and 10.5 ± 2.0% for NHS-IVF and HS-IVF, respectively) and parthenogenetic (33.0 ± 1.8% and 22.8 ± 2.8% for NHS-PART and HS-PART, respectively) embryos. Embryos from the HS-IVF subgroup showed less (P < 0.01) expression of Na+/K+-ATPase alpha 1 (0.67-fold) than did NHS-IVF embryos, whereas no difference was found for others genes. Embryos from the HS-PART subgroup showed less (P < 0.01) expression of Aqp 3 (0.77-fold) and greater (P < 0.05) expression of Bax (1.40-fold) than did NHS-PART embryos. Expression of Aqp 3 was up-regulated (P < 0.01) in NHS-PART (1.42-fold) embryos when compared with NHS-IVF ones, whereas expression of Na+/K+-ATPase alpha 1 (1.42-fold), Bax (1.67-fold), and Peroxiredoxin 1 (1.40-fold) were up-regulated (P < 0.05) in HS-PART embryos when compared with HS-IVF embryos. In conclusion, heat stress on oocytes during in vitro maturation can affect the amount of transcripts of in vitro-fertilized andparthenogenetic blastocysts, suggesting a residual effect on gene expression of bovine embryos. Financial support was provided by CNPq and FAPEMIG.


2011 ◽  
Vol 13 (2) ◽  
pp. 179-189 ◽  
Author(s):  
Xiang-Shun Cui ◽  
Yong-Nan Xu ◽  
Xing-Hui Shen ◽  
Li-Qun Zhang ◽  
Jia-Bao Zhang ◽  
...  

Author(s):  
Minxuan Yang ◽  
Yinglin Lu ◽  
Qizhao Zhu ◽  
Peng Gao ◽  
Xiaolei Xie ◽  
...  

The present study was conducted to evaluate the effects of dietary supplementation of tea polyphenol (TP) on serum hormone, serum enzyme activity, antioxidant-related and immune-related gene expression of laying hens under heat stress. A total of 288 Chinese yellow chicken (186 days old) were randomly distributed among two treatments, each of which included 6 replicates of 24 hens. Dietary treatments were that the basal diet was supplemented with 200 mg / kg tea polyphenol. The study lasted for 7 weeks, including 1 week of adaptation and 6 weeks of the formal test. The content of high-density lipoprotein cholesterol (HDL-C) and total protein (TP) in serum significantly decreased by dietary supplementation with tea polyphenol. Dietary tea polyphenol supplementation improved serum superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) enzyme activity and decreased serum malondialdehyde (MDA) content in treatments compared to the control. However, supplementation of tea polyphenol did not affect the activity of serum catalase (CAT). The results indicated that long-term feeding of tea polyphenols help to increase the amount of hormones (FSH, E2) associated with reproduction in laying hens and thus improve egg production. It also improved the immune function of laying hens in high temperature environments. Adding tea polyphenols to the diet can significantly increase the serum IgG, IgM content of the laying hens and can upregulate the IgA content. Dietary supplementation of tea polyphenols in the laying hens significantly increased the expression of antioxidant enzyme-related genes (SOD, CAT and GPX1) in the liver. Moreover, the addition of tea polyphenols significantly increased the expression of immune-related genes (Interferon-γ (INF-γ), Interleukin 2 (IL-2) and Interleukin 4 (IL-4)) in the spleen. It is concluded that addition of tea polyphenols has a positive effect on antioxidant activity and immune function of laying hens.


Sign in / Sign up

Export Citation Format

Share Document