scholarly journals Analysis of Cellular Mosaicism in a Transgenic Mouse by Histological In Situ Hybridization. (Transgenic mice/mosaics/cell lineage/in situ hybridization)

1988 ◽  
Vol 30 (6) ◽  
pp. 639-649 ◽  
Author(s):  
KAZUTO KATOH ◽  
MINESUKE YOKOYAMA ◽  
SHIARI KIMURA ◽  
YUKIO HIRAMOTO ◽  
HISATO KONDOH
1991 ◽  
Vol 261 (4) ◽  
pp. L349-L356 ◽  
Author(s):  
S. W. Glasser ◽  
T. R. Korfhagen ◽  
S. E. Wert ◽  
M. D. Bruno ◽  
K. M. McWilliams ◽  
...  

Transgenic mice bearing chimeric genes consisting of 5'-sequences derived from the human surfactant protein C (SP-C) gene and the bacterial chloramphenicol acetyltransferase (CAT) gene were generated. Analysis of CAT activity was utilized to demonstrate tissue-specific and developmental expression of chimeric genes containing 3.7 kb of sequences from the human SP-C gene. Lung-specific expression of the 3.7 SP-C-CAT transgene was observed in eight distinct transgenic mouse lines. Expression of the 3.7 SP-C-CAT transgene was first detected in fetal lung on day 11 of gestation and increased dramatically with advancing gestational age, reaching adult levels of activity before birth. In situ hybridization demonstrated that expression of 3.7 SP-C-CAT mRNA was confined to the distal respiratory epithelium. Antisense CAT hybridization was detected in bronchiolar and type II epithelial cells in the adult lung of the 3.7 SP-C-CAT transgenic mice. In situ hybridization of four distinct 3.7 SP-C-CAT transgenic mouse lines demonstrated bronchiolar-alveolar expression of the chimeric CAT gene, although the relative intensity of expression at each site varied within the lines studied. Glucocorticoids increased murine SP-C mRNA in fetal lung organ culture. Likewise, expression of 3.7 SP-C-CAT transgene increased during fetal lung organ or explant culture and was further enhanced by glucocorticoid in vitro. The 5'-regions of human SP-C conferred developmental, lung epithelial, and glucocorticoid-enhanced expression of bacterial CAT in transgenic mice. The increased expression of SP-C accompanying prenatal lung development and exposure to glucocorticoid is mediated, at least in part, at the transcriptional level, being influenced by cis-active elements contained within the 5'-flanking region of the human SP-C gene.


Blood ◽  
1992 ◽  
Vol 79 (7) ◽  
pp. 1823-1828 ◽  
Author(s):  
RE Kibbelaar ◽  
H van Kamp ◽  
EJ Dreef ◽  
G de Groot-Swings ◽  
JC Kluin-Nelemans ◽  
...  

Abstract Clonality of myeloid and lymphoid cell fractions obtained from peripheral blood (PB) or bone marrow (BM) of five patients with a myelodysplastic syndrome (MDS), was studied by combined immunophenotypic analysis and DNA in situ hybridization. This novel technique enables quantitative and direct analysis of cytogenetic alterations in nondividing cells of distinct cell lineages. Four patients with a trisomy 8 and one patient with a translocation (1;7) were studied. For cell lineage determination, antibodies specific for progenitor cells (CD34), myeloid cells (CD15), monocytes (63D3), T cells (CD3), and B cells (CD19,20,22) were used. In one patient with a trisomy 8, BM cells were available and the erythroid lineage could be studied. For detection of cytogenetic aberrations, we used chromosome- specific repetitive DNA probes. In three patients, all nonlymphoid cells carried the cytogenetic abnormality; in two patients, mosaicism within these lineages was suggested by the relative low numbers (35% to 55%) of aberrant cells. None of the T or B cells of the five patients carried the chromosomal aberrations. We conclude that combined immunophenotyping and in situ hybridization is a feasible technique to study lineage involvement. Our data suggest that the chromosomal aberrations studied in MDS are restricted to the myeloid lineages.


1986 ◽  
Vol 164 (5) ◽  
pp. 1389-1396 ◽  
Author(s):  
C R Bartram ◽  
J W Janssen ◽  
R Becher ◽  
A de Klein ◽  
G Grosveld

We report on a Ph+ chronic myelocytic leukemia (CML) case, cytogenetically characterized by the occurrence of a second Philadelphia (Ph) chromosome in lymphoid blast crisis of T cell lineage. In situ hybridization analyses showed a deletion of translocated c-abl sequences, present on the Ph during chronic state, from both Ph in acute state. Moreover, Southern blot analyses of blastic cells exhibited a rearrangement within bcr, but a deletion of 5' bcr sequences, and Northern blots failed to detect the hybrid 8.5 kb bcr/c-abl transcript usually observed in Ph+ CML.


Blood ◽  
1991 ◽  
Vol 77 (11) ◽  
pp. 2497-2503 ◽  
Author(s):  
ST Koury ◽  
MC Bondurant ◽  
MJ Koury ◽  
GL Semenza

Abstract In situ hybridization using antisense RNA probes was used to localize cells that produce erythropoietin (EPO) in the livers of anemic transgenic mice expressing the human EPO gene and in livers of anemic nontransgenic mice. In transgenic mice bled from a hematocrit of 55% to one of 10%, hepatocytes surrounding central veins synthesized large amounts of human EPO mRNA. EPO-producing cells were very rare in the area of portal triads. In transgenic mice bled to a hematocrit of 20%, a similar number and distribution of cells contained human EPO mRNA as was found with a 10% hematocrit, but the cells were less heavily labeled, indicating increased EPO production per cell at 10% hematocrit as compared with 20% hematocrit. No human EPO mRNA was detected in the kidneys of anemic transgenic mice, although endogenous murine EPO mRNA was strongly expressed in cortical interstitial cells. In sections of livers from nontransgenic mice bled from a hematocrit of 45% to one of 10%, only isolated cells produced EPO. When the types of cells could clearly be identified, approximately 80% of these cells were hepatocytes, while 20% had a nonepithelial morphology and were located in or adjacent to the sinusoidal spaces. When the sense strand was used as the RNA probe for in situ hybridization, no labeled cells were seen in normal or anemic livers. These results demonstrate that hepatocytes are responsible for production of EPO in both transgenic and nontransgenic mice and that a second cell type that is similar in morphology to EPO-producing interstitial cells in the kidney also produces EPO in the livers of nontransgenic mice.


1997 ◽  
Vol 45 (8) ◽  
pp. 1109-1119 ◽  
Author(s):  
Timo J. Nevalainen ◽  
V. Jukka O. Laine ◽  
David S. Grass

Group II phospholipase A2 (PLA2) has been proposed to play an important role in inflammation and defense against bacterial infection. We investigated tissues of transgenic mice expressing the human group II PLA2 gene by immunohistochemistry using rabbit anti-human group II PLA2 antibodies, and by in situ hybridization by probing with human group II PLA2 mRNA anti-sense (test) and sense (control) riboprobes. By immunohis-tochemistry, human group II PLA2 was found in various mouse tissues and cell types including hepatocytes, proximal tubule cells of the kidney, epithelial cells of the renal pelvis, urinary bladder and ureter, granulosa cells of Graafian follicles, aortic intima and media, cartilage, epiphyseal bone, bronchial epithelial cells, and connective tissue cells in the dermis. By in situ hybridization, group II PLA2 mRNA was localized in hepatocytes, epidermal cells, dermal cells, connective tissue fibroblasts, epithelial and smooth muscle cells of the urinary bladder, and cells of Bowman's capsule. These results show that human group II PLA2 is expressed in large amounts in hepatocytes and many extrahepatic tissues of the transgenic mice. These animals provide a useful new tool for studies on the metabolism, in vivo effects, and physiological and pathological roles of phospholipase A2. (J Histochem Cytochem 45:1109–1119, 1997)


1995 ◽  
Vol 90 (3) ◽  
pp. 701-706 ◽  
Author(s):  
VALERIE SOENEN ◽  
PIERRE FENAUX ◽  
MARTIAL FLACTIF ◽  
PASCALE LEPELLEY ◽  
JEAN LUC LAI ◽  
...  

1988 ◽  
Vol 168 (2) ◽  
pp. 589-603 ◽  
Author(s):  
H D Jeong ◽  
J M Teale

The functional B cell repertoire in BALB/c mice was assessed at various stages in ontogeny. This was done by analyzing VH gene family expression using the sensitive technique of in situ hybridization. The B cell repertoire was probed with the mitogen, LPS, and the antigen DNP. DNP was chosen because B cells responsive to this hapten appear very early in ontogeny. The APCs that developed after stimulation with LPS or DNP were analyzed for VH gene expression by in situ hybridization of individual cells using radiolabeled VH gene family probes. The results indicated that VH gene expression in fetal B cells after stimulation was distinct from adult B cells in that there was a biased expression of D proximal families. The results indicated that this bias was associated with developmental age and not a given differentiation stage in the B cell lineage. In addition, stimulation of fetal B cells with DNP resulted in a large increase in expression of member(s) of VH 36-60, suggesting that the early appearance of DNP-responsive B cells is not strictly correlated with preferential rearrangement of D proximal families, VH 7183 and VH Q52. However, the results suggested that a large proportion of pre-B cells that preferentially rearrange D proximal families early in ontogeny become part of the functional developing repertoire.


Blood ◽  
1993 ◽  
Vol 82 (3) ◽  
pp. 884-888 ◽  
Author(s):  
K van Lom ◽  
A Hagemeijer ◽  
EM Smit ◽  
B Lowenberg

Bone marrow and blood from patients with acute myeloid leukemia and myelodysplastic syndrome were studied by simultaneous analysis of cell morphology and karyotype. A combined technique of May-Grunwald Giemsa (MGG) for cell morphology and fluorescence in situ hybridization (FISH) with chromosome-specific DNA probes for detection of cytogenetic aberrations allowed us to investigate cell-lineage-specific chromosomal abnormalities. We introduced video recordings to examine large numbers of cells. Briefly, evaluation was first performed on MGG slides, during which cell position and morphology were recorded on an S-VHS recorder. Subsequently, the same slides were used for FISH. This resulted in the identification of MGG-stained cells on the video screen and, at the same time, the interpretation of FISH signals in the fluorescence microscope. Specimens of bone marrow or blood samples from four patients with different hematologic malignancies were studied. One of these patients was studied before and after cytotoxic treatment. The gain or loss of chromosomes could be detected easily and morphologically assigned to the blasts in all patients and to a variable proportion of the myelomonocytic lineage in two patients, but not to the lymphocytes. Thus, this method provides new possibilities for investigating the clonality of hematologic malignancies.


Sign in / Sign up

Export Citation Format

Share Document