scholarly journals Expression of Human Group II Phospholipase A2 in Transgenic Mice

1997 ◽  
Vol 45 (8) ◽  
pp. 1109-1119 ◽  
Author(s):  
Timo J. Nevalainen ◽  
V. Jukka O. Laine ◽  
David S. Grass

Group II phospholipase A2 (PLA2) has been proposed to play an important role in inflammation and defense against bacterial infection. We investigated tissues of transgenic mice expressing the human group II PLA2 gene by immunohistochemistry using rabbit anti-human group II PLA2 antibodies, and by in situ hybridization by probing with human group II PLA2 mRNA anti-sense (test) and sense (control) riboprobes. By immunohis-tochemistry, human group II PLA2 was found in various mouse tissues and cell types including hepatocytes, proximal tubule cells of the kidney, epithelial cells of the renal pelvis, urinary bladder and ureter, granulosa cells of Graafian follicles, aortic intima and media, cartilage, epiphyseal bone, bronchial epithelial cells, and connective tissue cells in the dermis. By in situ hybridization, group II PLA2 mRNA was localized in hepatocytes, epidermal cells, dermal cells, connective tissue fibroblasts, epithelial and smooth muscle cells of the urinary bladder, and cells of Bowman's capsule. These results show that human group II PLA2 is expressed in large amounts in hepatocytes and many extrahepatic tissues of the transgenic mice. These animals provide a useful new tool for studies on the metabolism, in vivo effects, and physiological and pathological roles of phospholipase A2. (J Histochem Cytochem 45:1109–1119, 1997)

2005 ◽  
Vol 53 (10) ◽  
pp. 1257-1271 ◽  
Author(s):  
Georges Pelletier ◽  
Van Luu-The ◽  
Songyun Li ◽  
Fernand Labrie

The enzyme type 8 17β-hydroxysteroid dehydrogenase (17β-HSD) selectively catalyzes the conversion of estradiol (E2) to estrone (E1). To obtain detailed information on the sites of action of type 8 17β-HSD, we have studied the cellular localization of type 8 17β-HSD mRNA in mouse tissues using in situ hybridization. In the ovary, hybridization signal was detected in granulosa cells of growing follicles and luteal cells. In the uterus, type 8 17β-HSD mRNA was found in the epithelial (luminal and glandular) and stromal cells. In the female mammary gland, the enzyme mRNA was seen in ductal epithelial cells and stromal cells. In the testis, hybridization signal was observed in the seminiferous tubule. In the prostate, type 8 17β-HSD was detected in the epithelial cells of the acini and stromal cells. In the clitoral and preputial glands, labeling was detected in the epithelial cells of acini and small ducts. The three lobes of the pituitary gland were labeled. In the adrenal gland, hybridization signal was observed in the three zones of the cortex, the medulla being unlabeled. In the kidney, the enzyme mRNA was found to be expressed in the epithelial cells of proximal convoluted tubules. In the liver, all the hepatocytes exhibited a positive signal. In the lung, type 8 17β-HSD mRNA was detected in bronchial epithelial cells and walls of pulmonary arteries. The present data suggest that type 8 17β-HSD can exert its action to downregulate E2 levels in a large variety of tissues.


1993 ◽  
Vol 4 (6) ◽  
pp. 342-345 ◽  
Author(s):  
S L Patrick ◽  
T C Wright ◽  
H E Fox ◽  
H S Ginsberg

Women are infected with HIV in increasing numbers; the predominant mode of spread is through heterosexual transmission. Little is known regarding the mechanism of HIV transit through the female genital tract. We investigated whether early passaage cervical epithelial cells could be directly infected with HIV-1LAI*. Virus production was measured using the reverse transcriptase (RT) assay and direct assay for syncytia-forming units. In-situ hybridization was performed on infected cervical cell cultures. Immunostaining was carried out using a monoclonal antibody to leukocyte common antigen (LCA). Virus was recovered in the supernatants of all infected cervical cultures. Localization of HIV infection using in-situ hybridization identified rare cells in the population which gave a strong signal. These infected cells had a lymphoid morphology and were also detected using immunostaining for LAC. Cervical epithelial cells were uninfected in this in vitro model; cells in this population which supported viral replication were most likely of the macrophage/monocyte lineage.


1986 ◽  
Vol 34 (7) ◽  
pp. 949-952 ◽  
Author(s):  
A J Stauder ◽  
P W Dickson ◽  
A R Aldred ◽  
G Schreiber ◽  
F A Mendelsohn ◽  
...  

The sites of synthesis of transthyretin in the brain were investigated using in situ hybridization with [35S]-labeled recombinant cDNA probes specific for transthyretin mRNA. Autoradiography of hybridized coronal sections of rat brain revealed specific cellular localization of transthyretin mRNA in choroid plexus epithelial cells of the lateral, third, and fourth ventricles. Transferrin mRNA was also investigated and, in contrast to transthyretin mRNA, was localized mainly in the lateral ventricles. Our results indicate that substantial synthesis of transthyretin and transferrin mRNA may occur in the choroid plexus.


1998 ◽  
Vol 274 (1) ◽  
pp. F91-F96 ◽  
Author(s):  
Peter R. Smith ◽  
Scott A. Mackler ◽  
Philip C. Weiser ◽  
David R. Brooker ◽  
Yoon J. Ahn ◽  
...  

The mammalian urinary bladder exhibits transepithelial Na+ absorption that contributes to Na+ gradients established by the kidney. Electrophysiological studies have demonstrated that electrogenic Na+ absorption across the urinary bladder is mediated in part by amiloride-sensitive Na+ channels situated within the apical membrane of the bladder epithelium. We have used a combination of in situ hybridization, Northern blot analysis, and immunocytochemistry to examine whether the recently cloned epithelial Na+ channel (ENaC) is expressed in the rat urinary bladder. In situ hybridization and Northern blot analyses indicate that α-, β-, and γ-rat ENaC (rENaC) are expressed in rat urinary bladder epithelial cells. Quantitation of the levels of α-, β-, and γ-rENaC mRNA expression in rat urinary bladder, relative to β-actin mRNA expression, indicates that, although comparable levels of α- and β-rENaC subunits are expressed in the urinary bladder of rats maintained on standard chow, the level of γ-rENaC mRNA expression is 5- to 10-fold lower than α- or β-rENaC mRNA. Immunocytochemistry, using an antibody directed against α-rENaC, revealed that ENaCs are predominantly localized to the luminal membrane of the bladder epithelium. Together, these data demonstrate that ENaC is expressed in the mammalian urinary bladder and suggest that amiloride-sensitive Na+ transport across the apical membrane of the mammalian urinary bladder epithelium is mediated primarily by ENaC.


Blood ◽  
1991 ◽  
Vol 77 (11) ◽  
pp. 2497-2503 ◽  
Author(s):  
ST Koury ◽  
MC Bondurant ◽  
MJ Koury ◽  
GL Semenza

Abstract In situ hybridization using antisense RNA probes was used to localize cells that produce erythropoietin (EPO) in the livers of anemic transgenic mice expressing the human EPO gene and in livers of anemic nontransgenic mice. In transgenic mice bled from a hematocrit of 55% to one of 10%, hepatocytes surrounding central veins synthesized large amounts of human EPO mRNA. EPO-producing cells were very rare in the area of portal triads. In transgenic mice bled to a hematocrit of 20%, a similar number and distribution of cells contained human EPO mRNA as was found with a 10% hematocrit, but the cells were less heavily labeled, indicating increased EPO production per cell at 10% hematocrit as compared with 20% hematocrit. No human EPO mRNA was detected in the kidneys of anemic transgenic mice, although endogenous murine EPO mRNA was strongly expressed in cortical interstitial cells. In sections of livers from nontransgenic mice bled from a hematocrit of 45% to one of 10%, only isolated cells produced EPO. When the types of cells could clearly be identified, approximately 80% of these cells were hepatocytes, while 20% had a nonepithelial morphology and were located in or adjacent to the sinusoidal spaces. When the sense strand was used as the RNA probe for in situ hybridization, no labeled cells were seen in normal or anemic livers. These results demonstrate that hepatocytes are responsible for production of EPO in both transgenic and nontransgenic mice and that a second cell type that is similar in morphology to EPO-producing interstitial cells in the kidney also produces EPO in the livers of nontransgenic mice.


Sign in / Sign up

Export Citation Format

Share Document