scholarly journals Evidence of two mechanisms for the activation of the glucose transporter GLUT1 by anisomycin: p38(MAP kinase) activation and protein synthesis inhibition in mammalian cells

1997 ◽  
Vol 504 (3) ◽  
pp. 517-525 ◽  
Author(s):  
Luis Felipe Barros ◽  
Michelle Young ◽  
Jeremy Saklatvala ◽  
Stephen A. Baldwin
Zygote ◽  
1996 ◽  
Vol 4 (3) ◽  
pp. 191-198 ◽  
Author(s):  
Maki Inoue ◽  
Kunihiko Naito ◽  
Taisuke Nakayama ◽  
Eimei Sato

SummaryPreviously we have shown that mitogen-activated protein (MAP) kinase activity abruptly increases at the first metaphase (M1) and remains significantly higher than that at the germinal vesicle (GV) stage until the second metaphase (M2) in porcine oocytes cultured in vitro. The present paper describes how the mechanism of the blockage of meiotic maturation by protein sythesis inhibition involves MAP kinase regulation. Cycloheximide arrested both germinal vesicle breakdown (GVBD) and the normal transition from M1 to M2. MAP kinase activation was also reduced in these maturation-inhibited oocytes. By using immunofluorescence microscopy with the monoclonal antibody raised against rat α-tubulin, we showed that cycloheximide caused morphological abnormality in a spindle at M1, but not at M2. All these results indicate that in porcine oocytes: (1) GV blockage by protein synthesis inhibition involves the suppression of both histone H1 kinase and MAP kinase activation, (2) during the transition from M1 to M2, maintenance of a normal metaphasic spindle and high MAP kinase activity require protein synthesis, and (3) once the M2 cytoskeletal structures have been completed, and/or after the ‘critical period’, cytostatic factor activity is independent of protein synthesis.


2004 ◽  
Vol 61 (6) ◽  
pp. 700-708 ◽  
Author(s):  
I. Sanchez-Perez ◽  
C. J. Rodriguez-Hernandez ◽  
C. Manguan-Garc�a ◽  
A. Torres ◽  
R. Perona ◽  
...  

2008 ◽  
Vol 99 (3) ◽  
pp. 1105-1118 ◽  
Author(s):  
Steven R. Young ◽  
Riccardo Bianchi ◽  
Robert K. S. Wong

Activation of group I metabotropic glutamate receptors (mGluRs) leads to a concerted modulation of spike afterpotentials in guinea pig hippocampal neurons including a suppression of both medium and slow afterhyperpolarizations (AHPs). Suppression of AHPs may be long-lasting, in that it persists after washout of the agonist. Here, we show that persistent AHP suppression differs from short-term, transient suppression in that distinct and additional signaling processes are required to render the suppression persistent. Persistent AHP suppression followed DHPG application for 30 min, but not DHPG application for 5 min. Persistent AHP suppression was temperature dependent, occurring at 30–31°C, but not at 25–26°C. Preincubation of slices in inhibitors of protein synthesis (cycloheximide or anisomycin) prevented the persistent suppression of AHPs by DHPG. Similarly, preincubation of slices in an inhibitor of p38 MAP kinase (SB 203580) prevented persistent AHP suppression. In contrast, a blocker of p42/44 MAP kinase activation (PD 98059) had no effect on persistent AHP suppression. Additionally, we show that the mGluR5 antagonist MPEP, but not the mGluR1 antagonist LY 367385, prevented DHPG-induced persistent AHP suppression. Thus persistent AHP suppression by DHPG in hippocampal neurons requires activation of mGluR5. In addition, activation of p38 MAP kinase signaling and protein synthesis are required to impart persistence to the DHPG-activated AHP suppression.


2001 ◽  
Vol 59 (3) ◽  
pp. 985-989 ◽  
Author(s):  
Andrea D. Hodgkinson ◽  
Beverley A. Millward ◽  
Andrew G. Demaine

Sign in / Sign up

Export Citation Format

Share Document