scholarly journals The effect of exercise training on hormone‐sensitive lipase in rat intra‐abdominal adipose tissue and muscle

2001 ◽  
Vol 536 (3) ◽  
pp. 871-877 ◽  
Author(s):  
L. H. Enevoldsen ◽  
B. Stallknecht ◽  
J. Langfort ◽  
L. N. Petersen ◽  
C. Holm ◽  
...  
1981 ◽  
Vol 256 (12) ◽  
pp. 6311-6320
Author(s):  
G. Fredrikson ◽  
P. Strålfors ◽  
N.O. Nilsson ◽  
P. Belfrage

1998 ◽  
Vol 83 (2) ◽  
pp. 626-631 ◽  
Author(s):  
Jaswinder S. Samra ◽  
Mo L. Clark ◽  
Sandy M. Humphreys ◽  
Ian A. MacDonald ◽  
Peter A. Bannister ◽  
...  

Cortisol is known to increase whole body lipolysis, yet chronic hypercortisolemia results in increased fat mass. The main aim of the study was to explain these two apparently opposed observations by examining the acute effects of hypercortisolemia on lipolysis in subcutaneous adipose tissue and in the whole body. Six healthy subjects were studied on two occasions. On one occasion hydrocortisone sodium succinate was infused iv to induce hypercortisolemia (mean plasma cortisol concentrations, 1500 ± 100 vs. 335± 25 nmol/L; P < 0.001); on the other occasion (control study) no intervention was made. Lipolysis in the sc adipose tissue of the anterior abdominal wall was studied by measurement of arterio-venous differences, and lipolysis in the whole body was studied by constant infusion of[ 1,2,3-2H5]glycerol for measurement of the systemic glycerol appearance rate. Hypercortisolemia led to significantly increased arterialized plasma nonesterified fatty acid (NEFA; P < 0.01) and blood glycerol concentrations (P < 0.05), with an increase in systemic glycerol appearance (P < 0.05). However, in sc abdominal adipose tissue, hypercortisolemia decreased veno-arterialized differences for NEFA (P < 0.05) and reduced NEFA efflux (P < 0.05). This reduction was attributable to decreased intracellular lipolysis (P < 0.05), reflecting decreased hormone-sensitive lipase action in this adipose depot. Hypercortisolemia caused a reduction in arterialized plasma TAG concentrations (P < 0.05), but without a significant change in the local extraction of TAG (presumed to reflect the action of adipose tissue lipoprotein lipase). There was no significant difference in plasma insulin concentrations between the control and hypercortisolemia study. Site-specific regulation of the enzymes of intracellular lipolysis (hormone-sensitive lipase) and intravascular lipolysis (lipoprotein lipase) may explain the ability of acute cortisol treatment to increase systemic glycerol and NEFA appearance rates while chronically promoting net central fat deposition.


1970 ◽  
Vol 11 (5) ◽  
pp. 466-472
Author(s):  
SU-CHEN TSAI ◽  
PER BELFRAGE ◽  
MARTHA VAUGHAN

2020 ◽  
Vol 21 (18) ◽  
pp. 6920
Author(s):  
Hisashi Kato ◽  
Junetsu Ogasawara ◽  
Hisashi Takakura ◽  
Ken Shirato ◽  
Takuya Sakurai ◽  
...  

Exercise training is well known to enhance adipocyte lipolysis in response to hormone challenge. However, the existence of a relationship between the timing of exercise training and its effect on adipocyte lipolysis is unknown. To clarify this issue, Wistar rats were run on a treadmill for 9 weeks in either the early part (E-EX) or late part of the active phase (L-EX). L-EX rats exhibited greater isoproterenol-stimulated lipolysis expressed as fold induction over basal lipolysis, with greater protein expression levels of hormone-sensitive lipase (HSL) phosphorylated at Ser 660 compared to E-EX rats. Furthermore, we discovered that Brain and muscle Arnt-like (BMAL)1 protein can associate directly with several protein kinase A (PKA) regulatory units (RIα, RIβ, and RIIβ) of protein kinase, its anchoring protein (AKAP)150, and HSL, and that the association of BMAL1 with the regulatory subunits of PKA, AKAP150, and HSL was greater in L-EX than in E-EX rats. In contrast, comparison between E-EX and their counterpart sedentary control rats showed a greater co-immunoprecipitation only between BMAL1 and ATGL. Thus, both E-EX and L-EX showed an enhanced lipolytic response to isoproterenol, but the mechanisms underlying exercise training-enhanced lipolytic response to isoproterenol were different in each group.


1992 ◽  
Vol 262 (2) ◽  
pp. R177-R181 ◽  
Author(s):  
B. E. Wilson ◽  
S. Deeb ◽  
G. L. Florant

White adipose tissue (WAT) and plasma samples were obtained from yellow-bellied marmots (Marmota flaviventris) throughout the year. Mean plasma triacylglycerol (TG), free fatty acids (FFAs), and glycerol were determined. There was a clear increase in FFAs and decrease in mean TG and glycerol during the hibernation period when animals were fasting, suggesting increased lipolysis. RNA was isolated from WAT biopsies at four times in the year: spring, summer, fall, and winter. There were significant changes in the relative levels of mRNA for lipoprotein lipase (LPL) and hormone-sensitive lipase (HSL) during the body mass cycle of the marmot. The relative levels of LPL mRNA are high during the mass gain phase of the year and that of HSL mRNA are high during the fasting period when endogenous lipid is utilized. These results suggest that the genes for LPL and HSL are regulated seasonally to control the adipose mass depot in marmots.


Sign in / Sign up

Export Citation Format

Share Document