scholarly journals Effect of exercise training intensity on adipose tissue hormone sensitive lipase gene expression in obese women under weight loss

2012 ◽  
Vol 1 (3) ◽  
pp. 184-190 ◽  
Author(s):  
Tongjian You ◽  
Xuewen Wang ◽  
Rongze Yang ◽  
Mary F. Lyles ◽  
Dawei Gong ◽  
...  
2001 ◽  
Vol 536 (3) ◽  
pp. 871-877 ◽  
Author(s):  
L. H. Enevoldsen ◽  
B. Stallknecht ◽  
J. Langfort ◽  
L. N. Petersen ◽  
C. Holm ◽  
...  

2007 ◽  
Vol 293 (1) ◽  
pp. E246-E251 ◽  
Author(s):  
J. Polak ◽  
C. Moro ◽  
E. Klimcakova ◽  
M. Kovacikova ◽  
M. Bajzova ◽  
...  

Thyroid dysfunction is associated with several abnormalities in intermediary metabolism, including impairment of lipolytic response to catecholamines in subcutaneous abdominal adipose tissue (SCAAT). Atrial natriuretic peptide (ANP) is a powerful lipolytic peptide; however, the role of ANP-mediated lipolysis in thyroid disease has not been elucidated. The aim of this study was to investigate the role of thyroid hormones in the regulation of ANP-induced lipolysis as well as in the gene expression of hormone-sensitive lipase, phosphodiesterase 3B (PDE3B), uncoupling protein-2 (UCP2), natriuretic peptide receptor type A, and β2-adrenergic receptor in SCAAT of hyperthyroid and hypothyroid patients. Gene expression in SCAAT was studied in 13 hypothyroid and 11 hyperthyroid age-matched women before and 2–4 mo after the normalization of their thyroid status. A microdialysis study was performed on a subset of nine hyperthyroid and 10 hypothyroid subjects. ANP- and isoprenaline-induced lipolyses were higher in hyperthyroid subjects, with no differences between the groups following treatment. Hormone-sensitive lipase gene expression was higher in hyperthyroid compared with hypothyroid subjects before treatment, whereas no difference was observed following treatment. No differences in gene expression of other genes were observed between the two groups. Following treatment, the gene expression of UCP2 decreased in hyperthyroid, whereas the expression of PDE3B decreased in hypothyroid subjects. We conclude that thyroid hormones regulate ANP- and isoprenaline-mediated lipolysis in human SCAAT in vivo. Increased lipolytic subcutaneous adipose tissue response in hyperthyroid patients may involve postreceptor signaling mechanisms.


2009 ◽  
Vol 29 (4) ◽  
pp. 237-243 ◽  
Author(s):  
María del Mar Romero ◽  
José A. Fernández-López ◽  
Montserrat Esteve ◽  
Marià Alemany

In the present study we intended to determine how BAT (brown adipose tissue) maintained thermogenesis under treatment with OE (oleoyl-oestrone), a powerful slimming hormone that sheds off body lipid but maintains the metabolic rate. Overweight male rats were subjected to daily gavages of 10 nmol/g of OE or vehicle (control) for 10 days. A PF (pair-fed) vehicle-receiving group was used to discount the effects attributable to energy availability limitation. Interscapular BAT mass, lipid, DNA, mRNA and the RT-PCR (real-time PCR) expression of lipid and energy metabolism genes for enzymes and regulatory proteins were measured. BAT mass and lipid were decreased in OE and PF, with the latter showing a marked reduction in tissue mRNA. Maintenance of perilipin gene expression in PF and OE rats despite the loss of lipid suggests the preservation of the vacuolar interactive surface, a critical factor for thermogenic responsiveness. OE and, to a lesser extent, PF maintained the expression of genes controlling lipolysis and fatty acid oxidation, but markedly decreased the expression of those genes involved in lipogenic and acyl-glycerol synthesis. OE did not affect UCP1 (uncoupling protein 1) (decreased in PF), β3 adrenergic receptors or hormone-sensitive lipase gene mRNAs, which may translate in maintaining a full thermogenic system potential. OE rats were able to maintain a less energetically stressed BAT (probably through glucose utilization) than PF rats. These changes were not paralleled in PF rats, in which lower thermogenesis and glucose preservation resulted in a heavier toll on internal fat stores. Thus the mechanism of action of OE is more complex and tissue-specific than previously assumed.


Metabolism ◽  
1995 ◽  
Vol 44 (12) ◽  
pp. 1596-1605 ◽  
Author(s):  
John M. Ong ◽  
Rosa B. Simsolo ◽  
Mehrnoosh Saghizadeh ◽  
John W.F. Goers ◽  
Philip A. Kern

1996 ◽  
Vol 318 (3) ◽  
pp. 1057-1063 ◽  
Author(s):  
Emmanuelle PLÉE-GAUTIER ◽  
Jacques GROBER ◽  
Eric DUPLUS ◽  
Dominique LANGIN ◽  
Claude FOREST

Hormone-sensitive lipase (HSL) catalyses the rate-limiting step in adipocyte lipolysis. Short-term hormonal regulation of HSL activity is well characterized, whereas little is known about the control of HSL gene expression. We have measured HSL mRNA content of 3T3-F442A and BFC-1 adipocytes in response to the cAMP analogue 8-(4-chlorophenylthio)-cAMP (8-CPT-cAMP) and to the phorbol ester phorbol 12-myristate 13-acetate (PMA) by Northern blot, using a specific mouse cDNA fragment. Treatment of the cells for 12 or 6 h with, respectively, 0.5 mM 8-CPT-cAMP or 1 µM PMA produced a maximal decrease of about 60% in HSL mRNA. These effects were unaffected by the protein-synthesis inhibitor anisomycin, suggesting that cAMP and PMA actions were direct. The reduction in HSL mRNA was accompanied by a reduction in HSL total activity. The intracellular routes that cAMP and PMA follow for inducing such an effect seemed clearly independent. (i) After desensitization of the protein kinase C regulation pathway by a 24 h treatment of the cells with 1 µM PMA, PMA action was abolished whereas cAMP was still fully active. (ii) Treatment with saturating concentrations of both agents produced an additive effect. (iii) The synthetic glucocorticoid dexamethasone had no proper effect on HSL gene expression but potentiated cAMP action without affecting PMA action. cAMP inhibitory action on HSL is unexpected. Indeed, the second messenger of catecholamines is the main activator of HSL by phosphorylation. We envision that a long-term cAMP treatment of adipocytes induces a counter-regulatory process that reduces HSL content and, ultimately, limits fatty acid depletion from stored triacylglycerols.


Sign in / Sign up

Export Citation Format

Share Document