Survival of Lactobacillus acidophilus LMGP-21381 in probiotic ice cream and its influence on sensory acceptability

2010 ◽  
Vol 64 (1) ◽  
pp. 130-136 ◽  
Author(s):  
FENIA G NOUSIA ◽  
PETROS I ANDROULAKIS ◽  
DIMITRIOS J FLETOURIS
Author(s):  
Natalia Santos Leal ◽  
Raquel Ornelas Marques ◽  
Renata Leonardo Lomele ◽  
Luciane do Carmo Seraphim ◽  
Raquel Vasconcelos Loureçon ◽  
...  

2021 ◽  
Vol 24 ◽  
Author(s):  
María Hayayumi-Valdivia ◽  
Luis Francisco Márquez-Villacorta ◽  
Carla Consuelo Pretell-Vásquez

Abstract This study evaluated the effect of microencapsulation and addition of mango peel powder on the survival of Lactobacillus acidophilus and Bifidobacterium lactis, overrun, apparent viscosity, and overall acceptability of symbiotic ice cream during storage at -20 °C for 180 days. Six formulations of vanilla-flavored ice cream were prepared: three with addition of probiotic cultures at a concentration of 108 CFU/g and 0, 2%, and 3% mango peel powder microencapsulated in a sodium alginate matrix, and three with free addition. Analytical evaluations were performed after 1, 30, 60, 90, 120 and 180 days of storage. The results showed that microencapsulation of probiotics and prebiotics statistically influenced (p < 0.05) the characteristics evaluated. The formulation with microencapsulated probiotics and 2% mango peel powder was considered as the best product. This formulation is promising for future commercial application as a functional food because, at the end 180 days of storage, it showed probiotics population >106 CFU/g, 72.97% overrun, 292 mPA apparent viscosity, and good overall acceptance (7.6 points) equivalent to “I like it very much”.


2006 ◽  
Vol 71 (6) ◽  
pp. S492-S495 ◽  
Author(s):  
Carmen Sílvia Favaro-Trindade ◽  
Sabrina Bernardi ◽  
Renata Barbosa Bodini ◽  
Júlio César De Carvalho Balieiro ◽  
Eduardo De Almeida

2007 ◽  
Vol 13 (4) ◽  
pp. 285-291 ◽  
Author(s):  
C.S. Favaro-Trindade ◽  
J.C. de Carvalho Balieiro ◽  
P. Felix Dias ◽  
F. Amaral Sanino ◽  
C. Boschini

Twelve fermented yellow mombin ice creams were produced with different starter cultures (Lactobacillus acidophilus 74-2, L. acidophilus LAC 4 and yoghurt starter culture), final pH (4.5 and 5) and concentrations of added cream (5 and 10%). Probiotic culture stability, melting properties and sensory acceptance were evaluated in ice cream samples. The mixes were frozen and stored for 105 days at -18°C. The melting rates were lower for samples with a pH of 4.5. Both probiotic cultures resisted the freezing process and, although a tendency for the counts to decrease during storage was detected, they were still higher than 10 6 cfu/g after 105 days, even in products with a pH of 4.5. A pH 4.5, 5% cream and L. acidophilus LAC 4 ice cream received significantly higher sensory scores when compared with pH 5, 10% cream and L. acidophilus 74-2 ice cream. The fermented yellow mombin ice cream was a suitable food for the delivery of L. acidophilus strains, with excellent viability and acceptable sensory characteristics.


Animals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 70
Author(s):  
Magdalena Kowalczyk ◽  
Agata Znamirowska ◽  
Małgorzata Pawlos ◽  
Magdalena Buniowska

The aim of this study was to determine the possibility of using Olkuska sheep milk for the production of ice cream with probiotics and prebiotics. The study examined the effect of the storage and type of bacteria used for the fermentation of ice cream mixes and partial replacement of inulin with apple fiber on the physicochemical properties, viability of probiotic cultures and organoleptic properties of sheep’s milk ice cream stored at −22 °C for 21 days. The addition of apple fiber reduced the pH value of ice cream mixes before fermentation. In ice cream mixes and ice cream with apple fiber, the lactic acid content was higher by 0.1–0.2 g L−1 than in their equivalents with inulin only. These differences persisted during the storage of the ice cream. After fermentation of the ice mixes, the bacterial cell count ranged from 10.62 log cfu g−1 to 12.25 log cfu g−1. The freezing process reduced the population of probiotic bacteria cells in ice cream with inulin from 0.8 log cfu g−1 in ice cream with Lactobacillus acidophilus, 1.0 log cfu g−1 in ice cream with Lacticaseibacillus paracasei and 1.1 log cfu g−1 in ice cream with Lacticaseibacillus casei. Freezing the varieties with apple fiber also resulted in a reduction of viable bacterial cells from 0.8 log cfu g−1 in ice cream with L. paracasei and Lb. acidophilus to 1 log cfu g−1 in ice cream with L. casei, compared to the results after fermentation. The highest percentage overrun was determined in ice cream with L. paracasei and Lb. acidophilus. Ice cream with L. casei was characterized by significantly lower overrun on the 7th and 21st days of storage. Although L. paracasei ice cream had the highest overrun, it did not cause a significant reduction in the probiotic population during storage. After seven days of storage, the first drop differed significantly depending on the type of bacteria used for fermentation of the mixture and the addition of apple fiber. L. casei ice cream had a longer first drop time than L. paracasei and Lb. acidophilus ice cream. Partial replacement of inulin with apple fiber resulted in a significant darkening of the color of ice cream mixes. Depending on the type of bacteria used for fermentation, the addition of apple fiber decreased the value of the L* parameter. Ice cream mixes and ice cream with inulin and apple fiber were characterized by a high proportion of yellow. Partial replacement of inulin with apple fiber reduced the hardness of ice cream compared to inulin-only ice cream. Moreover, the panelists found that ice cream with inulin was characterized by a sweeter taste than ice cream with apple fiber. Moreover, the addition of apple fiber favorably increased the flavor and aroma perception of the mango-passion fruit. Therefore, the milk of Olkuska sheep could be successfully used for the production of symbiotic dairy ice cream.


2020 ◽  
Vol 14 (3) ◽  
pp. 2147-2156
Author(s):  
Sarmad Ghazi Al-Shawi ◽  
Haider Ibrahim Ali

The study was conducted to prepare control, probiotic (Lactobacillus acidophilus), and synbiotic (L. acidophilus and inulin) ice cream, L. acidophilus content, pH, titratable acidity, sensory properties were evaluated during frozen storage periods. L. acidophilus counts were the higher in synbiotic ice cream, adding inulin to probiotic ice cream enhanced significantly (P<0.05) the content of L. acidophilus. Freezing process caused a decrease in L. acidophilus counts along with storage periods in all the samples of ice cream. Synbiotic ice cream was the lower in pH values and the higher in TA values compared to the other ice cream samples. Synbiotic ice cream was the better in overall acceptance followed by probiotic and control ice cream, respectively. So, ice cream fortification with L. acidophilus probiotic bacteria and prebiotic inulin have a positive influence on all sensory characteristics. Probiotic content of both synbiotic and probiotic ice cream could be considered as functional therapeutic healthy product since it was more than the lowest concentration of probiotic bacteria to provide the beneficial attributes which are 106 cfu/g at the consumption time of the product.


Sign in / Sign up

Export Citation Format

Share Document