Physicochemical properties of low-fat soft cheese Turkish Beyaz made with bacterial cellulose as fat mimetic

2011 ◽  
Vol 64 (4) ◽  
pp. 502-508 ◽  
Author(s):  
AYNUR G KARAHAN ◽  
ARZU KART ◽  
AYLIN AKOĞLU ◽  
M LüTFü ÇAKMAKÇı
2021 ◽  
Vol 97 ◽  
pp. 107161
Author(s):  
Jeongmin Nam ◽  
Yujin Hyun ◽  
Subin Oh ◽  
Jinseok Park ◽  
Hyoung-Joon Jin ◽  
...  

2014 ◽  
Vol 80 (6) ◽  
pp. 1926-1932 ◽  
Author(s):  
Na Yin ◽  
Thiago M. A. Santos ◽  
George K. Auer ◽  
John A. Crooks ◽  
Piercen M. Oliver ◽  
...  

ABSTRACTBacterial cellulose (BC) has a range of structural and physicochemical properties that make it a particularly useful material for the culture of bacteria. We studied the growth of 14 genera of bacteria on BC substrates produced byAcetobacter xylinumand compared the results to growth on the commercially available biopolymers agar, gellan, and xanthan. We demonstrate that BC produces rates of bacterial cell growth that typically exceed those on the commercial biopolymers and yields cultures with higher titers of cells at stationary phase. The morphology of the cells did not change during growth on BC. The rates of nutrient diffusion in BC being higher than those in other biopolymers is likely a primary factor that leads to higher growth rates. Collectively, our results suggest that the use of BC may open new avenues in microbiology by facilitating bacterial cell culture and isolation.


2016 ◽  
Vol 7 (12) ◽  
pp. 517-520
Author(s):  
Magda Abd El Aziz ◽  
W. Nasr ◽  
Karima Abo El Enien

Nanoscale ◽  
2020 ◽  
Vol 12 (35) ◽  
pp. 18409-18417
Author(s):  
Hadi Eynaki ◽  
Mohammad Ali Kiani ◽  
Hamed Golmohammadi

Herein, we have developed a nanopaper-based screen-printed electrode as a hybrid opto-electrochemical sensing device by taking advantage of the unrivaled physicochemical properties of bacterial cellulose nanopaper in screen printing technology.


Sign in / Sign up

Export Citation Format

Share Document